TY - JOUR
T1 - Entangled histories versus the two-state-vector formalism
T2 - Towards a better understanding of quantum temporal correlations
AU - Nowakowski, Marcin
AU - Cohen, Eliahu
AU - Horodecki, Pawel
N1 - Publisher Copyright:
© 2018 American Physical Society.
PY - 2018/9/10
Y1 - 2018/9/10
N2 - The two-state-vector formalism and the entangled histories formalism are attempts to better understand quantum correlations in time. Both formalisms share some similarities, but they are not identical, having subtle differences in their interpretation and manipulation of quantum temporal structures. However, the main objective of this paper is to prove that, with appropriately defined scalar products, both formalisms can be made isomorphic. We show, for instance, that they treat operators and states on equal footing, leading to the same statistics for all measurements. In particular, we discuss the topic of quantum correlations in time and show how they can be generated and analyzed in a consistent way using these formalisms. Furthermore, we elaborate on an unconventional behavior of quantum histories of evolving multipartite systems which do not exhibit global nonlocal correlations in time but nevertheless can lead to entangled reduced histories characterizing evolution of an arbitrarily chosen subsystem.
AB - The two-state-vector formalism and the entangled histories formalism are attempts to better understand quantum correlations in time. Both formalisms share some similarities, but they are not identical, having subtle differences in their interpretation and manipulation of quantum temporal structures. However, the main objective of this paper is to prove that, with appropriately defined scalar products, both formalisms can be made isomorphic. We show, for instance, that they treat operators and states on equal footing, leading to the same statistics for all measurements. In particular, we discuss the topic of quantum correlations in time and show how they can be generated and analyzed in a consistent way using these formalisms. Furthermore, we elaborate on an unconventional behavior of quantum histories of evolving multipartite systems which do not exhibit global nonlocal correlations in time but nevertheless can lead to entangled reduced histories characterizing evolution of an arbitrarily chosen subsystem.
UR - http://www.scopus.com/inward/record.url?scp=85053267448&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.98.032312
DO - 10.1103/PhysRevA.98.032312
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85053267448
SN - 2469-9926
VL - 98
JO - Physical Review A
JF - Physical Review A
IS - 3
M1 - 032312
ER -