Enhanced Performance of Ti3C2Tx (MXene) Electrodes in Concentrated ZnCl2 Solutions: A Combined Electrochemical and EQCM-D Study

Bar Gavriel, Netanel Shpigel, Fyodor Malchik, Gil Bergman, Meital Turgeman, Mikhael D. Levi, Doron Aurbach

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

The need for improved batteries and supercapacitors, which are not based on lithium compounds, promotes significant research efforts to find suitable alternative systems based on various mono and multivalent cations capable of delivering high energy and power density with good long-term stability. The progress in aqueous Zn-ion batteries and supercapacitors obtained over the past years lead to the development of new structures and compounds that enable revisable hosting of Zn-ions while keeping good structural integrity. Yet, as aqueous electrolytes involve also the generation and co-insertion of protons it is necessary to carefully define what is the charge storage mechanism in these Zn insertion compounds. In this work, the use of Ti3C2Tx as an anode for the Zn-ion system was evaluated for the first time in different ZnCl2 concentrations. Remarkable changes in the charge storage mechanism and the performance of the Ti3C2Tx electrodes were observed by moving from dilute Zn electrolytes (1 M) to higher concentrations. The high acidity of the concentrated ZnCl2 solutions results in an additional charge storage mechanism that arises from redox interactions between the MXene and the released protons and hence enhanced capacity values (60 mAh/g with good rate capability and capacity retention of 89.4% after 9000 cycles). In-situ EQCM-D measurements were employed to shed light on the charge storage mechanism of the Ti3C2Tx and the exact identity of the charge carrier inserted into the electrodes. The demonstrated EQCM-D based analysis provides precise quantification of the Zn-ion to proton ratio in the examined system and can be further applied for other aqueous Zn-ion electrodes and multivalent systems as well.

Original languageEnglish
Pages (from-to)535-541
Number of pages7
JournalEnergy Storage Materials
Volume38
DOIs
StatePublished - Jun 2021

Bibliographical note

Publisher Copyright:
© 2021 Elsevier B.V.

Fingerprint

Dive into the research topics of 'Enhanced Performance of Ti3C2Tx (MXene) Electrodes in Concentrated ZnCl2 Solutions: A Combined Electrochemical and EQCM-D Study'. Together they form a unique fingerprint.

Cite this