Enhanced Optical Tunable Excited Capacitor (EOTEC) for Faster Responsivity

Harel Brestel, Zeev Zalevsky, Avi Karsenty

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

The expected performances of an Enhanced Optical Tunable Excited Capacitor (EOTEC) have been studied, as part of a large effort to develop optoelectronic high-speed devices for optical communication. The influence of nano/micro-crystal dots, embedded in a thick SiO2 film grown on a silicon substrate, has been studied as a function of several parameters such as the sweep rate, the penetration depth, the dots size and the various materials properties of several elements. We numerically demonstrate capabilities of future faster optoelectronic responsivity. The obtained series of C-V curves enable a good forecast of the possible usage and applications, such as MOSFET, tunable capacitor, memory unit, and Boolean logic element.

Original languageEnglish
Title of host publication2018 IEEE International Conference on the Science of Electrical Engineering in Israel, ICSEE 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538663783
DOIs
StatePublished - 2 Jul 2018
Externally publishedYes
Event2018 IEEE International Conference on the Science of Electrical Engineering in Israel, ICSEE 2018 - Eilat, Israel
Duration: 12 Dec 201814 Dec 2018

Publication series

Name2018 IEEE International Conference on the Science of Electrical Engineering in Israel, ICSEE 2018

Conference

Conference2018 IEEE International Conference on the Science of Electrical Engineering in Israel, ICSEE 2018
Country/TerritoryIsrael
CityEilat
Period12/12/1814/12/18

Bibliographical note

Publisher Copyright:
© 2018 IEEE.

Keywords

  • CMOS
  • capacitor
  • high-speed device
  • semiconductor
  • silicon
  • tunable

Fingerprint

Dive into the research topics of 'Enhanced Optical Tunable Excited Capacitor (EOTEC) for Faster Responsivity'. Together they form a unique fingerprint.

Cite this