TY - JOUR
T1 - Enhanced anion electroadsorption into carbon molecular sieve electrodes in acidic media
AU - Eliad, Linoam
AU - Salitra, Gregory
AU - Pollak, Elad
AU - Soffer, Abraham
AU - Aurbach, Doron
PY - 2005/11/8
Y1 - 2005/11/8
N2 - We previously showed that, for neutral electrolytes of small cations and relatively larger anions, it is possible to design certain pore sizes in active carbons that are large enough to electroadsorb cations but too small to allow anion electroadsorption. This situation leads to an electrical double-layer (EDL) capacitance that is significant only at potentials that are negative to the potential of zero charge (PZC); hence, much smaller capacitance is measured at potentials positive to the PZC. It was found that when the electrolyte is a strong acid (e.g., H2SO4 HCl), a considerable capacitance is observed at positive potentials, even when the average pore size is too small to allow the insertion of large anions in neutral electrolyte solutions. This effect disappears when the pore size becomes considerably larger than the size of the ions. In this case, the EDL capacitance at positive potentials for both neutral and acidic solutions is comparable. The following four-step mechanism was found to comply best with the experimental data: (1) By acid catalysis, the protons form carbonium species within the conjugated carbon network. (2) The anions react with the carbonium ions, providing uncharged species in an activated state, which are chemibound as surface groups to the walls of the pores. (3) Because these surface groups are effectively much smaller in size than are the charged ions, they can migrate by chemical bond exchange within the carbon skeleton via constrictions (known to exist in microporous and molecular sieving carbons), which are too narrow to accommodate hydrated charged species. (4) Upon reaching wider spaces, the uncharged species are reionized and solvated by water molecules, which can fill small pores. The justification for the above mechanism is thoroughly discussed and demonstrated by the experimental results.
AB - We previously showed that, for neutral electrolytes of small cations and relatively larger anions, it is possible to design certain pore sizes in active carbons that are large enough to electroadsorb cations but too small to allow anion electroadsorption. This situation leads to an electrical double-layer (EDL) capacitance that is significant only at potentials that are negative to the potential of zero charge (PZC); hence, much smaller capacitance is measured at potentials positive to the PZC. It was found that when the electrolyte is a strong acid (e.g., H2SO4 HCl), a considerable capacitance is observed at positive potentials, even when the average pore size is too small to allow the insertion of large anions in neutral electrolyte solutions. This effect disappears when the pore size becomes considerably larger than the size of the ions. In this case, the EDL capacitance at positive potentials for both neutral and acidic solutions is comparable. The following four-step mechanism was found to comply best with the experimental data: (1) By acid catalysis, the protons form carbonium species within the conjugated carbon network. (2) The anions react with the carbonium ions, providing uncharged species in an activated state, which are chemibound as surface groups to the walls of the pores. (3) Because these surface groups are effectively much smaller in size than are the charged ions, they can migrate by chemical bond exchange within the carbon skeleton via constrictions (known to exist in microporous and molecular sieving carbons), which are too narrow to accommodate hydrated charged species. (4) Upon reaching wider spaces, the uncharged species are reionized and solvated by water molecules, which can fill small pores. The justification for the above mechanism is thoroughly discussed and demonstrated by the experimental results.
UR - http://www.scopus.com/inward/record.url?scp=28044470307&partnerID=8YFLogxK
U2 - 10.1021/la0505317
DO - 10.1021/la0505317
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 16262328
AN - SCOPUS:28044470307
SN - 0743-7463
VL - 21
SP - 10615
EP - 10623
JO - Langmuir
JF - Langmuir
IS - 23
ER -