Emergency department online patient-caregiver scheduling

Hanan Rosemarin, Ariel Rosenfeld, Sarit Kraus

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

Emergency Departments (EDs) provide an imperative source of medical care. Central to the ED workflow is the patient-caregiver scheduling, directed at getting the right patient to the right caregiver at the right time. Unfortunately, common ED scheduling practices are based on ad-hoc heuristics which may not be aligned with the complex and partially conflicting ED's objectives. In this paper, we propose a novel online deep-learning scheduling approach for the automatic assignment and scheduling of medical personnel to arriving patients. Our approach allows for the optimization of explicit, hospital-specific multi-variate objectives and takes advantage of available data, without altering the existing workflow of the ED. In an extensive empirical evaluation, using real-world data, we show that our approach can significantly improve an ED's performance metrics.

Original languageEnglish
Title of host publication33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PublisherAAAI press
Pages10013-10014
Number of pages2
ISBN (Electronic)9781577358091
DOIs
StatePublished - 2019
Event33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 - Honolulu, United States
Duration: 27 Jan 20191 Feb 2019

Publication series

Name33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019

Conference

Conference33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Country/TerritoryUnited States
CityHonolulu
Period27/01/191/02/19

Bibliographical note

Publisher Copyright:
© 2019, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Fingerprint

Dive into the research topics of 'Emergency department online patient-caregiver scheduling'. Together they form a unique fingerprint.

Cite this