TY - JOUR
T1 - Emergence of bursting in a network of memory dependent excitable and spiking leech-heart neurons
AU - Sharma, Sanjeev Kumar
AU - Mondal, Argha
AU - Mondal, Arnab
AU - Upadhyay, Ranjit Kumar
AU - Hens, Chittaranjan
N1 - Publisher Copyright:
© 2020 The Author(s).
PY - 2020/6/1
Y1 - 2020/6/1
N2 - Excitable cells often produce different oscillatory activities that help us to understand the transmitting and processing of signals in the neural system. The diverse excitabilities of an individual neuron can be reproduced by a fractional-order biophysical model that preserves several previous memory effects. However, it is not completely clear to what extent the fractional-order dynamics changes the firing properties of excitable cells. In this article, we investigate the alternation of spiking and bursting phenomena of an uncoupled and coupled fractional leech-heart (L-H) neurons. We show that a complete graph of heterogeneous de-synchronized neurons in the backdrop of diverse memory settings (a mixture of integer and fractional exponents) can eventually lead to bursting with the formation of cluster synchronization over a certain threshold of coupling strength, however, the uncoupled L-H neurons cannot reveal bursting dynamics. Using the stability analysis in fractional domain, we demarcate the parameter space where the quiescent or steady-state emerges in uncoupled L-H neuron. Finally, a reduced-order model is introduced to capture the activities of the large network of fractional-order model neurons.
AB - Excitable cells often produce different oscillatory activities that help us to understand the transmitting and processing of signals in the neural system. The diverse excitabilities of an individual neuron can be reproduced by a fractional-order biophysical model that preserves several previous memory effects. However, it is not completely clear to what extent the fractional-order dynamics changes the firing properties of excitable cells. In this article, we investigate the alternation of spiking and bursting phenomena of an uncoupled and coupled fractional leech-heart (L-H) neurons. We show that a complete graph of heterogeneous de-synchronized neurons in the backdrop of diverse memory settings (a mixture of integer and fractional exponents) can eventually lead to bursting with the formation of cluster synchronization over a certain threshold of coupling strength, however, the uncoupled L-H neurons cannot reveal bursting dynamics. Using the stability analysis in fractional domain, we demarcate the parameter space where the quiescent or steady-state emerges in uncoupled L-H neuron. Finally, a reduced-order model is introduced to capture the activities of the large network of fractional-order model neurons.
KW - excitable neuron model
KW - fractional dynamics
KW - spiking-bursting
KW - stability
KW - synchronization networks
UR - http://www.scopus.com/inward/record.url?scp=85087026347&partnerID=8YFLogxK
U2 - 10.1098/rsif.2019.0859
DO - 10.1098/rsif.2019.0859
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 32574543
AN - SCOPUS:85087026347
SN - 1742-5689
VL - 17
JO - Journal of the Royal Society Interface
JF - Journal of the Royal Society Interface
IS - 167
M1 - rsif20190859
ER -