TY - JOUR
T1 - ELG1, a yeast gene required for genome stability, forms a complex related to replication factor C
AU - Ben-Aroya, Shay
AU - Koren, Amnon
AU - Liefshitz, Batia
AU - Steinlauf, Rivka
AU - Kupiec, Martin
PY - 2003/8/19
Y1 - 2003/8/19
N2 - Many overlapping surveillance and repair mechanisms operate in eukaryotic cells to ensure the stability of the genome. We have screened to isolate yeast mutants exhibiting increased levels of recombination between repeated sequences. Here we characterize one of these mutants, elg1. Strains lacking Elglp exhibit elevated levels of recombination between homologous and nonhomologous chromosomes, as well as between sister chromatids and direct repeats. These strains also exhibit increased levels of chromosome loss. The Elg1 protein shares sequence homology with the large subunit of the clamp loader replication factor C (RFC) and with the product of two additional genes involved in checkpoint functions and genome maintenance: RAD24 and CTF18. Elg1p forms a complex with the Rfc2-5 subunits of RFC that is distinct from the previously described RFC-like complexes containing Rad24 and Ctf18. Genetic data indicate that the Elgl, Ctf18, and Rad24 RFC-like complexes work in three separate pathways important for maintaining the integrity of the genome and for coping with various genomic stresses.
AB - Many overlapping surveillance and repair mechanisms operate in eukaryotic cells to ensure the stability of the genome. We have screened to isolate yeast mutants exhibiting increased levels of recombination between repeated sequences. Here we characterize one of these mutants, elg1. Strains lacking Elglp exhibit elevated levels of recombination between homologous and nonhomologous chromosomes, as well as between sister chromatids and direct repeats. These strains also exhibit increased levels of chromosome loss. The Elg1 protein shares sequence homology with the large subunit of the clamp loader replication factor C (RFC) and with the product of two additional genes involved in checkpoint functions and genome maintenance: RAD24 and CTF18. Elg1p forms a complex with the Rfc2-5 subunits of RFC that is distinct from the previously described RFC-like complexes containing Rad24 and Ctf18. Genetic data indicate that the Elgl, Ctf18, and Rad24 RFC-like complexes work in three separate pathways important for maintaining the integrity of the genome and for coping with various genomic stresses.
UR - http://www.scopus.com/inward/record.url?scp=0042191693&partnerID=8YFLogxK
U2 - 10.1073/pnas.1633757100
DO - 10.1073/pnas.1633757100
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 12909721
AN - SCOPUS:0042191693
SN - 0027-8424
VL - 100
SP - 9906
EP - 9911
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 17
ER -