TY - JOUR
T1 - Elementary equivalence of the automorphism groups of Abelian p-groups
AU - Bunina, E. I.
AU - Roizner, M. A.
PY - 2010
Y1 - 2010
N2 - We consider Abelian p-groups (p ≥ 3) A1 = D1 ⊕ G1 and A2 = D2 ⊕ G2, where D1 and D2 are divisible and G1 and G2 are reduced subgroups. We prove that if the automorphism groups Aut A1 and Aut A2 are elementarily equivalent, then the groups D1, D2 and G1, G2 are equivalent, respectively, in the second-order logic.
AB - We consider Abelian p-groups (p ≥ 3) A1 = D1 ⊕ G1 and A2 = D2 ⊕ G2, where D1 and D2 are divisible and G1 and G2 are reduced subgroups. We prove that if the automorphism groups Aut A1 and Aut A2 are elementarily equivalent, then the groups D1, D2 and G1, G2 are equivalent, respectively, in the second-order logic.
UR - http://www.scopus.com/inward/record.url?scp=77956059624&partnerID=8YFLogxK
U2 - 10.1007/s10958-010-0063-2
DO - 10.1007/s10958-010-0063-2
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:77956059624
SN - 1072-3374
VL - 169
SP - 614
EP - 635
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
IS - 5
ER -