Electrochemical enhancement of LiFePO4 as a cathode material by incorporating Cu flakes for lithium ion rechargeable battery

Jungbae Lee, Purushottam Kumar, Brij M. Moudgil, Rajiv K. Singh

Research output: Contribution to journalArticlepeer-review

37 Scopus citations

Abstract

The demand for power sources for electric vehicles (EV) and hybrid electric vehicles (HEV) with high-specific energy has brought immense interest in LiFePO4 (LFP) as a cathode for lithium ion batteries. However, intrinsically poor conductivity of LFP has hindered the realization of its high theoretical capacity (170 mAh g- 1). In order to improve the electric conductivity of LFP cathode, Cu flakes with very high surface area was incorporated in the cathode by ball milling Cu flakes. Uniformly dispersed Cu flakes subsequently transformed to CuO during the calcination process. The Cu incorporated LFP composite cathode showed a high capacity of 161 mAh g - 1, displayed excellent high rate and cyclic performance. The capacity loss was less than 15% at a discharge rate of 2C and less than 1% after 50 cycles at C/10 rate. The cathode composite was characterized using X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Micro-Raman, and specific surface area. Electrochemical properties were measured using electrochemical impedance spectroscopy (EIS), potentiostatic intermittent titration technique (PITT) and galvanostatic measurements.

Original languageEnglish
Pages (from-to)18-24
Number of pages7
JournalSolid State Ionics
Volume231
DOIs
StatePublished - 2013
Externally publishedYes

Keywords

  • Cathode
  • Cu flake
  • LiFePO4
  • Lithium ion batteries

Fingerprint

Dive into the research topics of 'Electrochemical enhancement of LiFePO4 as a cathode material by incorporating Cu flakes for lithium ion rechargeable battery'. Together they form a unique fingerprint.

Cite this