Efficient Secure Three-Party Sorting with Applications to Data Analysis and Heavy Hitters

Gilad Asharov, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Ariel Nof, Benny Pinkas, Katsumi Takahashi, Junichi Tomida

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

We present a three-party sorting protocol secure against passive and active adversaries in the honest majority setting. The protocol can be easily combined with other secure protocols which work on shared data, and thus enable different data analysis tasks, such as private set intersection of shared data, deduplication, and the identification of heavy hitters. The new protocol computes a stable sort. It is based on radix sort and is asymptotically better than previous secure sorting protocols. It improves on previous radix sort protocols by not having to shuffle the entire length of the items after each comparison step. We implemented our sorting protocol with different optimizations and achieved concretely fast performance. For example, sorting one million items with 32-bit keys and 32-bit values takes less than 2 seconds with semi-honest security and about 3.5 seconds with malicious security. Finding the heavy hitters among hundreds of thousands of 256-bit values takes only a few seconds, compared to close to an hour in previous work.

Original languageEnglish
Title of host publicationCCS 2022 - Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security
PublisherAssociation for Computing Machinery
Pages125-138
Number of pages14
ISBN (Electronic)9781450394505
DOIs
StatePublished - 7 Nov 2022
Event28th ACM SIGSAC Conference on Computer and Communications Security, CCS 2022 - Los Angeles, United States
Duration: 7 Nov 202211 Nov 2022

Publication series

NameProceedings of the ACM Conference on Computer and Communications Security
ISSN (Print)1543-7221

Conference

Conference28th ACM SIGSAC Conference on Computer and Communications Security, CCS 2022
Country/TerritoryUnited States
CityLos Angeles
Period7/11/2211/11/22

Bibliographical note

Publisher Copyright:
© 2022 ACM.

Keywords

  • honest majority
  • secure computation
  • sorting

Fingerprint

Dive into the research topics of 'Efficient Secure Three-Party Sorting with Applications to Data Analysis and Heavy Hitters'. Together they form a unique fingerprint.

Cite this