Efficient secure multiparty computation with identifiable abort

Carsten Baum, Emmanuela Orsini, Peter Scholl

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Scopus citations

Abstract

We study secure multiparty computation (MPC) in the dishonest majority setting providing security with identifiable abort, where if the protocol aborts, the honest parties can agree upon the identity of a corrupt party. All known constructions that achieve this notion require expensive zero-knowledge techniques to obtain active security, so are not practical. In this work, we present the first efficient MPC protocol with identifiable abort. Our protocol has an information-theoretic online phase with message complexity O(n2) for each secure multiplication (where n is the number of parties), similar to the BDOZ protocol (Bendlin et al., Eurocrypt 2011), which is a factor in the security parameter lower than the identifiable abort protocol of Ishai et al. (Crypto 2014). A key component of our protocol is a linearly homomorphic information-theoretic signature scheme, for which we provide the first definitions and construction based on a previous non-homomorphic scheme. We then show how to implement the preprocessing for our protocol using somewhat homomorphic encryption, similarly to the SPDZ protocol (Damgård et al., Crypto 2012).

Original languageEnglish
Title of host publicationTheory of Cryptography - 14th International Conference, TCC 2016-B, Proceedings
EditorsAdam Smith, Martin Hirt
PublisherSpringer Verlag
Pages461-490
Number of pages30
ISBN (Print)9783662536407
DOIs
StatePublished - 2016
Externally publishedYes
Event14th International Conference on Theory of Cryptography, TCC 2016-B - Beijing, China
Duration: 31 Oct 20163 Nov 2016

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9985 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference14th International Conference on Theory of Cryptography, TCC 2016-B
Country/TerritoryChina
CityBeijing
Period31/10/163/11/16

Bibliographical note

Publisher Copyright:
© International Association for Cryptologic Research 2016.

Keywords

  • Identifiable abort
  • Secure multiparty computation

Fingerprint

Dive into the research topics of 'Efficient secure multiparty computation with identifiable abort'. Together they form a unique fingerprint.

Cite this