Efficient network immunization under limited knowledge

Yangyang Liu, Hillel Sanhedrai, Gao Gao Dong, Louis M. Shekhtman, Fan Wang, Sergey V. Buldyrev, Shlomo Havlin

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Targeted immunization of centralized nodes in large-scale networks has attracted significant attention. However, in real-world scenarios, knowledge and observations of the network may be limited, thereby precluding a full assessment of the optimal nodes to immunize (or quarantine) in order to avoid epidemic spreading such as that of the current coronavirus disease (COVID-19) epidemic. Here, we study a novel immunization strategy where only n nodes are observed at a time and the most central among these n nodes is immunized.This process can globally immunize a network.We find that even for small n (?10) there is significant improvement in the immunization (quarantine), which is very close to the levels of immunization with full knowledge. We develop an analytical framework for our method and determine the critical percolation threshold pc and the size of the giant component P? for networks with arbitrary degree distributions P(k). In the limit of n we recover prior work on targeted immunization, whereas for n=1 we recover the known case of random immunization. Between these two extremes, we observe that, as n increases, pc increases quickly towards its optimal value under targeted immunization with complete information. In particular, we find a new general scaling relationship between |pc(?)?pc(n)| and n as |pc(?)?pc(n)| ? n?1exp(n). For scale-free (SF) networks, where P(k)?k , 2? 3, we find that pc has a transition from zero to nonzero when n increases from n=1 toO(logN) (whereNis the size of the network). Thus, for SF networks, having knowledge of ?logN nodes and immunizing the most optimal among them can dramatically reduce epidemic spreading.We also demonstrate our limited knowledge immunization strategy on several real-world networks and confirm that in these real networks, pc increases significantly even for small n.

Original languageEnglish
Article numbernwaa229
Pages (from-to)nwaa229
JournalNational Science Review
Volume8
Issue number1
DOIs
StatePublished - 1 Jan 2021

Bibliographical note

Publisher Copyright:
© 2021 Oxford University Press. All rights reserved.

Keywords

  • complex networks
  • critical phenomena
  • network immunization
  • percolation

Fingerprint

Dive into the research topics of 'Efficient network immunization under limited knowledge'. Together they form a unique fingerprint.

Cite this