Abstract
We consider a real-time emergency evacuation problem that seeks to compute a set of rapid evacuation routes in a building. Given a three-dimensional geometric structure of the evacuation network, an emergency evacuation route is a sequence of movements of people away from the threat or actual occurrence of a hazard (such as a fire, a hidden bomb) to a safe exit in the network. In such a network each room/crossing/exit in the building is designated as a node and the corridors/staircases/links between the rooms are edges. The evacuation times assigned to the edges are normally distributed random variables. This stochastic routing problem subject to deadline constraints is NP-hard. We provide a new pseudo-polynomial-time dynamic programming algorithm to solve this problem. Based on this algorithm, we construct two types of approximation algorithm, namely a fully polynomial-time approximation scheme providing "almost-optimal" solutions and a fully polynomial-time approximately feasible scheme yielding a best "almost feasible" solution. We present a case study and results of computational experiments to illustrate the working and efficacy of the proposed solution methods, respectively.
Original language | English |
---|---|
Pages (from-to) | 231-242 |
Number of pages | 12 |
Journal | Computers and Industrial Engineering |
Volume | 76 |
DOIs | |
State | Published - Oct 2014 |
Bibliographical note
Publisher Copyright:© 2014 Elsevier B.V. All rights reserved.
Keywords
- Dynamic programming
- Fully polynomial-time approximately feasible scheme
- Fully polynomial-time approximation scheme
- No-notice building evacuation
- Real-time emergency routing