Effective solutions for real-world stackelberg games: When agents must deal with human uncertainties

James Pita, Manish Jain, Fernando Ordóñez, Milind Tambe, Sarit Kraus, Reuma Magori-Cohen

Research output: Contribution to journalArticlepeer-review

61 Scopus citations


How do we build multiagent algorithms for agent interactions with human adversaries? Slackelberg games are natural models for many important applications that involve human interaction, such as oligopolistic markets and security domains. In Stackelberg games, one player, the leader, commits to a strategy and the follower makes their decision with knowledge of the leader's commitment. Existing algorithms for Stackelberg games efficiently find optimal solutions (leader strategy), but they critically assume that the follower plays optimally. Unfortunately, in real-world applications, agents face human followers (adversaries) who - because of their bounded rationality and limited observation of the leader strategy - may deviate from their expected optimal response. Not taking into account these likely deviations when dealing with human adversaries can cause an unacceptable degradation in the leader's reward, particularly in security applications where these algorithms have seen real-world deployment. To address this crucial problem, this paper introduces three new mixed-integer linear programs (MILPs) for Stackelberg games to consider human adversaries, incorporating: (i) novel anchoring theories on human perception of probability distributions and (ii) robustness approaches for MILPs to address human imprecision. Since these new approaches consider human adversaries, traditional proofs of correctness or optimally are insufficient; instead, it is necessary to rely on empirical validation. To that end, this paper considers two settings based on real deployed security systems, and compares 6 different approaches (three new with three previous approaches), in 4 different observability conditions, involving 98 human subjects playing 1360 games in total. The final conclusion was that a model which incorporates both the ideas of robustness and anchoring achieves statistically significant better rewards and also maintains equivalent or faster solution speeds compared to existing approaches. Copyright © 2009, International Foundation for Autonomous Agents and Multiagent Systems.


Dive into the research topics of 'Effective solutions for real-world stackelberg games: When agents must deal with human uncertainties'. Together they form a unique fingerprint.

Cite this