Abstract
We consider the problem of estimating the angles of arrival (AOAs) of multiple sources from a single snapshot obtained by a set of non-coherent sub-arrays, i.e., while the antenna elements in each sub-array are coherent, each sub-array observes a different unknown phase. Previous relevant works are based on eigendecomposition of the sample covariance, which requires a large number of snapshots, or on combining the sub-arrays using non-coherent processing methods. In this paper, we propose a technique to estimate the sub-arrays phase offsets for a given AOAs hypothesis, which facilitates approximate maximum likelihood estimation of the AOAs from a single snapshot. Numerical experiments show that the proposed approach clearly outperforms non-coherent processing, and even attains the Cramér-Rao lower bound in various scenarios.
Original language | English |
---|---|
Title of host publication | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 4557-4561 |
Number of pages | 5 |
ISBN (Electronic) | 9781509066315 |
DOIs | |
State | Published - May 2020 |
Externally published | Yes |
Event | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain Duration: 4 May 2020 → 8 May 2020 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2020-May |
ISSN (Print) | 1520-6149 |
Conference
Conference | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 |
---|---|
Country/Territory | Spain |
City | Barcelona |
Period | 4/05/20 → 8/05/20 |
Bibliographical note
Publisher Copyright:© 2020 IEEE.
Keywords
- Angle of arrival
- array processing
- maximum likelihood estimation
- multiple sources
- single snapshot.