Effect of Ni doping on the magnetic and electronic properties of half heusler Cu1-xNixMnSb alloys

A. Bandyopadhyay, S. K. Neogi, A. Paul, C. Meneghini, I. Dasgupta, Sugata Ray

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

The effect of Ni-doping on the magnetic and electronic properties of cubic half heusler Cu1-xNixMnSb (x = 0.04, 0.07, 0.1, 0.125) compounds have been investigated both experimentally and theoretically in light of the development of half-metallic ferromagnetism (HMFM) in x = 1, NiMnSb. Our findings reveal that Ni-substitution introduces ferromagnetic (FM) correlations within the parent AFM matrix of CuMnSb. This is followed by the reduction in spin-down density of states (DOS) at the Fermi energy (EF), verified from the gradual suppression of T2-dependency in the low T resistivity variation upon increasing doping content. The ab-initio electronic structure calculations further suggest that the Sb p-holes, produced upon Ni doping, mediate the RKKY-type indirect FM exchange between the distant Mn atoms, and consequently, the spin-down DOS starts to get depleted at the Fermi energy. Further the importance of the Sb p-holes in mediating ferromagnetic (FM) exchange interaction, is illustrated theoretically on Fe-doped Cu1-x FexMnSb systems having identical crystal structure, where appreciable Sb holes stabilizes FM correlations at much lower concentration of Fe.

Original languageEnglish
Pages (from-to)656-664
Number of pages9
JournalJournal of Alloys and Compounds
Volume764
DOIs
StatePublished - 5 Oct 2018
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2018 Elsevier B.V.

Keywords

  • Density functional theory
  • Half heusler alloys
  • Half-metallic ferromagnet
  • Mixed magnetic phase
  • Resistivity variation

Fingerprint

Dive into the research topics of 'Effect of Ni doping on the magnetic and electronic properties of half heusler Cu1-xNixMnSb alloys'. Together they form a unique fingerprint.

Cite this