Earthquake networks based on similar activity patterns

Joel N. Tenenbaum, Shlomo Havlin, H. Eugene Stanley

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

Earthquakes are a complex spatiotemporal phenomenon, the underlying mechanism for which is still not fully understood despite decades of research and analysis. We propose and develop a network approach to earthquake events. In this network, a node represents a spatial location while a link between two nodes represents similar activity patterns in the two different locations. The strength of a link is proportional to the strength of the cross correlation in activities of two nodes joined by the link. We apply our network approach to a Japanese earthquake catalog spanning the 14-year period 1985-1998. We find strong links representing large correlations between patterns in locations separated by more than 1000 kilometers, corroborating prior observations that earthquake interactions have no characteristic length scale. We find network characteristics not attributable to chance alone, including a large number of network links, high node assortativity, and strong stability over time.

Original languageEnglish
Article number046107
JournalPhysical Review E
Volume86
Issue number4
DOIs
StatePublished - 15 Oct 2012

Fingerprint

Dive into the research topics of 'Earthquake networks based on similar activity patterns'. Together they form a unique fingerprint.

Cite this