Domains and defects in nuclear pasta

A. S. Schneider, M. E. Caplan, D. K. Berry, C. J. Horowitz

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Nuclear pasta topology is an essential ingredient to determine transport properties in the inner crust of neutron stars. We perform semiclassical molecular dynamics simulations of nuclear pasta for proton fractions Yp=0.30 and Yp=0.40 near one-third of nuclear saturation density, n=0.05fm-3, at a temperature T=1.0MeV. Our simulations are, to our knowledge, the largest nuclear pasta simulations to date and contain up to 3276800 nucleons in the Yp=0.30 and 819200 nucleons in the Yp=0.40 case. An algorithm to determine which nucleons are part of a given sub-domain in the system is presented. By comparing runs of different sizes we study finite-size effects, equilibration time, the formation of multiple domains and defects in the pasta structures, as well as the structure factor dependence on simulation size. Although we find qualitative agreement between the topological structure and the structure factors of runs with 51 200 nucleons and those with 819200 nucleons or more, we show that simulations with hundreds of thousands of nucleons may be necessary to accurately predict pasta transport properties.

Original languageEnglish
Article number055801
JournalPhysical Review C
Volume98
Issue number5
DOIs
StatePublished - 7 Nov 2018
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2018 American Physical Society.

Funding

We thank Greg Huber (KITP) and Kris Delaney (UCSB) for interesting and useful discussions regarding polymer topology and their similarities to nuclear pasta. We also thank William Newton (TAMU-Commerce) for sharing his insights on nuclear pasta domains, and Gerardo Ortiz (IU Bloomington) and Andrey Chugunov (IOFFE Institute St. Petersburg) for suggestions that helped improve this paper considerably. A.S.S. was supported in part by the Conselho Nacional de Desenvolvimento CientÃ-fico e TecnolÃgico (201432/2014-5) and in part by the National Science Foundation under Award No. AST-1333520 and CAREER PHY-1151197. M.E.C. is supported by a fellowship from Canadian Institute for Theoretical Astrophysics. This research was supported in part by DOE Grants No. DE-FG02-87ER40365 (Indiana University) and No. DE-SC0018083 (NUCLEI SciDAC-4 Collaboration), and in part by Lilly Endowment, Inc., through its support for the Indiana University Pervasive Technology Institute, and in part by the Indiana METACyt Initiative. The Indiana METACyt Initiative at IU is also supported in part by Lilly Endowment, Inc. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725. We thank Greg Huber (KITP) and Kris Delaney (UCSB) for interesting and useful discussions regarding polymer topology and their similarities to nuclear pasta. We also thank William Newton (TAMU-Commerce) for sharing his insights on nuclear pasta domains, and Gerardo Ortiz (IU Bloomington) and Andrey Chugunov (IOFFE Institute St. Petersburg) for suggestions that helped improve this paper considerably. A.S.S. was supported in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (201432/2014-5) and in part by the National Science Foundation under Award No. AST-1333520 and CAREER PHY-1151197. M.E.C. is supported by a fellowship from Canadian Institute for Theoretical Astrophysics. This research was supported in part by DOE Grants No. DE-FG02-87ER40365 (Indiana University) and No. DE-SC0018083 (NUCLEI SciDAC-4 Collaboration), and in part by Lilly Endowment, Inc., through its support for the Indiana University Pervasive Technology Institute, and in part by the Indiana METACyt Initiative. The Indiana METACyt Initiative at IU is also supported in part by Lilly Endowment, Inc. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

FundersFunder number
Indiana METACyt Initiative
Indiana University Pervasive Technology Institute
Lilly Endowment, Inc.
National Science FoundationPHY-1151197, AST-1333520
U.S. Department of EnergyDE-SC0018083, DE-FG02-87ER40365
Directorate for Mathematical and Physical Sciences1151197, 1333520
Office of ScienceDE-AC05-00OR22725
Indiana University
Lilly Endowment
Canadian Institute for Theoretical Astrophysics
Conselho Nacional de Desenvolvimento Científico e Tecnológico201432/2014-5
National Science Foundation

    Fingerprint

    Dive into the research topics of 'Domains and defects in nuclear pasta'. Together they form a unique fingerprint.

    Cite this