Diverse electrical responses in a network of fractional-order conductance-based excitable Morris-Lecar systems

Sanjeev K. Sharma, Argha Mondal, Eva Kaslik, Chittaranjan Hens, Chris G. Antonopoulos

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


The diverse excitabilities of cells often produce various spiking-bursting oscillations that are found in the neural system. We establish the ability of a fractional-order excitable neuron model with Caputo’s fractional derivative to analyze the effects of its dynamics on the spike train features observed in our results. The significance of this generalization relies on a theoretical framework of the model in which memory and hereditary properties are considered. Employing the fractional exponent, we first provide information about the variations in electrical activities. We deal with the 2D class I and class II excitable Morris-Lecar (M-L) neuron models that show the alternation of spiking and bursting features including MMOs & MMBOs of an uncoupled fractional-order neuron. We then extend the study with the 3D slow-fast M-L model in the fractional domain. The considered approach establishes a way to describe various characteristics similarities between fractional-order and classical integer-order dynamics. Using the stability and bifurcation analysis, we discuss different parameter spaces where the quiescent state emerges in uncoupled neurons. We show the characteristics consistent with the analytical results. Next, the Erdös-Rényi network of desynchronized mixed neurons (oscillatory and excitable) is constructed that is coupled through membrane voltage. It can generate complex firing activities where quiescent neurons start to fire. Furthermore, we have shown that increasing coupling can create cluster synchronization, and eventually it can enable the network to fire in unison. Based on cluster synchronization, we develop a reduced-order model which can capture the activities of the entire network. Our results reveal that the effect of fractional-order depends on the synaptic connectivity and the memory trace of the system. Additionally, the dynamics captures spike frequency adaptation and spike latency that occur over multiple timescales as the effects of fractional derivative, which has been observed in neural computation.

Original languageEnglish
Article number8215
JournalScientific Reports
Issue number1
StatePublished - 22 May 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2023, The Author(s).


This work was supported by the London Mathematical Society grant; grant number 52106 to the authors AM and CGA.

FundersFunder number
London Mathematical Society52106


    Dive into the research topics of 'Diverse electrical responses in a network of fractional-order conductance-based excitable Morris-Lecar systems'. Together they form a unique fingerprint.

    Cite this