Abstract
Collinear facilitation, the mechanism for grouping contour elements, is a process involving lateral interactions that improve the detectability of a target by the presence of collinear flankers. It was shown that the development of collinear facilitation is experience dependent and that it may be impaired when the visual input is distorted in one meridian (meridional amblyopia). In oblique astigmatism, the blurring is on the opposite oblique meridian in both eyes, resulting in two conflicting images, which may affect the development of binocular vision. We hypothesized that the collinear facilitation of adults with oblique astigmatism is reminiscent of the abnormal development of the lateral facilitation of meridional amblyopia. We explored the perception of binocular vision and collinear facilitation in cases of both distorted and non-distorted vision. Fully corrected participants that tested for the target contrast detection of Gabor patches and two collinear flankers, presented for 80 ms, were positioned at different orientations (0° (180°), 45°, 90°, and 135°) and for different eyes (monocular, binocular). The results show a significant anisotropy for monocular collinear facilitation between the blured and the clear meridians, being lower in the blurriest meridian than in the clearest meridian, resembling the meridional amblyopia results. Collinear facilitation results in poor binocular summation between the monocular channels. Our results indicate that the perceptual behavior was similar to that of meridional amblyopic subjects having an anisotropy of collinear facilitation between cardinal meridians in oblique astigmatic subjects.
Original language | English |
---|---|
Article number | 11527 |
Journal | Scientific Reports |
Volume | 10 |
Issue number | 1 |
DOIs | |
State | Published - 1 Dec 2020 |
Bibliographical note
Publisher Copyright:© 2020, The Author(s).
Funding
This study was supported by research grants from the Israeli Science Foundation (ISF, 188/10) and DIP 349/1–1.
Funders | Funder number |
---|---|
Israeli Science Foundation | 188/10, DIP 349/1–1 |