Abstract
Latent variable discovery is a central problem in data analysis with a broad range of applications in applied science. In this work, we consider data given as an invertible mixture of two statistically independent components, and assume that one of the components is observed while the other is hidden. Our goal is to recover the hidden component. For this purpose, we propose an autoencoder equipped with a discriminator. Unlike the standard nonlinear ICA problem, which was shown to be non-identifiable, in the special case of ICA we consider here, we show that our approach can recover the component of interest up to entropy-preserving transformation. We demonstrate the performance of the proposed approach in several tasks, including image synthesis, voice cloning, and fetal ECG extraction.
Original language | English |
---|---|
Title of host publication | Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022 |
Editors | S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh |
Publisher | Neural information processing systems foundation |
ISBN (Electronic) | 9781713871088 |
State | Published - 2022 |
Event | 36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, United States Duration: 28 Nov 2022 → 9 Dec 2022 |
Publication series
Name | Advances in Neural Information Processing Systems |
---|---|
Volume | 35 |
ISSN (Print) | 1049-5258 |
Conference
Conference | 36th Conference on Neural Information Processing Systems, NeurIPS 2022 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 28/11/22 → 9/12/22 |
Bibliographical note
Publisher Copyright:© 2022 Neural information processing systems foundation. All rights reserved.
Funding
We thank the reviewers for their important comments and suggestions. The work of OK and RT was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 802735-ERC-DIFFOP. RT acknowledges the support of the Schmidt Career Advancement Chair in AI. We thank the reviewers for their important comments and suggestions. The work of OK and RT was supported by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 802735-ERC-DIFFOP. RT acknowledges the support of the Schmidt Career Advancement Chair in AI.
Funders | Funder number |
---|---|
Horizon 2020 Framework Programme | |
Horizon 2020 | 802735-ERC-DIFFOP |