Abstract
We determine the liquid-solid phase diagram for carbon-oxygen and oxygen-selenium plasma mixtures using two-phase molecular dynamics simulations. We identify liquid, solid, and interface regions using a bond angle metric. To study finite-size effects, we perform 27648- and 55296-ion simulations. To help monitor nonequilibrium effects, we calculate diffusion constants D i. For the carbon-oxygen system we find that D O for oxygen ions in the solid is much smaller than D C for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our carbon-oxygen phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite-size and nonequilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known. The oxygen-selenium system is a simple two-component model for more complex rapid proton capture nucleosynthesis ash compositions for an accreting neutron star. Diffusion of oxygen, in a predominantly selenium crystal, is remarkably fast, comparable to diffusion in the liquid phase. We find a somewhat lower melting temperature for the oxygen-selenium system than that predicted by Medin and Cumming. This is probably because of electron screening effects.
| Original language | English |
|---|---|
| Article number | 066405 |
| Journal | Physical Review E |
| Volume | 85 |
| Issue number | 6 |
| DOIs | |
| State | Published - 20 Jun 2012 |
| Externally published | Yes |