TY - JOUR
T1 - Dimensions of random recursive sets
AU - Berlinkov, A. G.
PY - 2006/12
Y1 - 2006/12
N2 - We prove a theorem that generalizes the equality among the packing, Hausdorff, and upper and lower Minkowski dimensions for a general class of random recursive constructions, and apply it to constructions with finite memory. Then we prove an upper bound on the packing dimension of certain random distribution functions on [0, 1]. Bibliography: 7 titles.
AB - We prove a theorem that generalizes the equality among the packing, Hausdorff, and upper and lower Minkowski dimensions for a general class of random recursive constructions, and apply it to constructions with finite memory. Then we prove an upper bound on the packing dimension of certain random distribution functions on [0, 1]. Bibliography: 7 titles.
UR - http://www.scopus.com/inward/record.url?scp=33750512570&partnerID=8YFLogxK
U2 - 10.1007/s10958-006-0367-4
DO - 10.1007/s10958-006-0367-4
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:33750512570
SN - 1072-3374
VL - 139
SP - 6506
EP - 6509
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
IS - 3
ER -