Development of a CDK10/CycM in vitro Kinase Screening Assay and Identification of First Small-Molecule Inhibitors

Thomas Robert, Jared L. Johnson, Roxane Guichaoua, Tomer M. Yaron, Stéphane Bach, Lewis C. Cantley, Pierre Colas

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Cyclin-dependent kinases (CDKs) constitute a family of 20 serine/threonine protein kinases that play pivotal roles in the regulation of numerous important molecular and cellular processes. CDKs have long been considered promising therapeutic targets in a variety of pathologies, and the recent therapeutic success of CDK4/6 inhibitors in breast cancers has renewed interest in their therapeutic potential. Small-molecule inhibitors have been identified for every human CDK, except for CDK10. The only recent discovery of an activating cyclin (CycM) for CDK10 enabled us to identify its first phosphorylation substrates and gain insights into its biological functions. Yet, our knowledge of this kinase remains incomplete, despite it being the only member of its family that causes severe human developmental syndromes, when mutated either on the cyclin or the CDK moiety. CDK10 small-molecule inhibitors would be useful in exploring the functions of this kinase and gauging its potential as a therapeutic target for some cancers. Here, we report the identification of an optimized peptide phosphorylation substrate of CDK10/CycM and the development of the first homogeneous, miniaturized CDK10/CycM in vitro kinase assay. We reveal the ability of known CDK inhibitors, among which clinically tested SNS-032, riviciclib, flavopiridol, dinaciclib, AZD4573 and AT7519, to potently inhibit CDK10/CycM. We also show that NVP-2, a strong, remarkably selective CDK9 inhibitor is an equally potent CDK10/CycM inhibitor. Finally, we validate this kinase assay for applications in high-throughput screening campaigns to discover new, original CDK10 inhibitors.

Original languageEnglish
Article number147
JournalFrontiers in Chemistry
Volume8
DOIs
StatePublished - 27 Feb 2020
Externally publishedYes

Bibliographical note

Publisher Copyright:
© Copyright © 2020 Robert, Johnson, Guichaoua, Yaron, Bach, Cantley and Colas.

Funding

We thank la Ligue contre le Cancer Grand Ouest for their financial support. We thank IBiSA (French infrastructures for biology, health sciences and agronomy) and Biogenouest is deficient in STAR syndrome. Proc. Natl. Acad. Sci. U.S.A. 110, 19525–19530. doi: 10.1073/pnas.1306814110 Guen, V. J., Gamble, C., Lees, J. A., and Colas, P. (2017). The awakening of the CDK10/Cyclin M protein kinase. Oncotarget 8, 50174–50186. doi: 10.18632/oncotarget.15024 Guen, V. J., Gamble, C., Perez, D. E., Bourassa, S., Zappel, H., Gartner, J., et al. (2016). STAR syndrome-associated CDK10/Cyclin M regulates actin network architecture and ciliogenesis. Cell Cycle 15, 678–688. doi: 10.1080/15384101.2016.1147632 Hutti, J. E., Jarrell, E. T., Chang, J. D., Abbott, D. W., Storz, P., Toker, A., et al. (2004). A rapid method for determining protein kinase phosphorylation specificity. Nat. Methods 1, 27–29. doi: 10.1038/nme th708 Joshi, K. S., Rathos, M. J., Joshi, R. D., Sivakumar, M., Mascarenhas, M., Kamble, S., et al. (2007). In vitro antitumor properties of a novel cyclin-dependent kinase inhibitor, P276-00. Mol. Cancer Ther. 6, 918–925. doi: 10.1158/1535-7163.MCT-06-0613 Kaida, D., Schneider-Poetsch, T., and Yoshida, M. (2012). Splicing in oncogenesis and tumor suppression. Cancer Sci. 103, 1611–1616. doi: 10.1111/j.1349-7006.2012.02356.x Knight, Z. A., and Shokat, K. M. (2005). Features of selective kinase inhibitors. Chem. Biol. 12, 621–637. doi: 10.1016/j.chembiol.2005.04.011 Li, H., You, Y., and Liu, J. (2018). Cyclin-dependent kinase 10 prevents glioma metastasis via modulation of Snail expression. Mol. Med. Rep. 18, 1165–1170. doi: 10.3892/mmr.2018.9059 Lim, S., and Kaldis, P. (2013). Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140, 3079–3093. doi: 10.1242/dev.091744 Malumbres, M., Harlow, E., Hunt, T., Hunter, T., Lahti, J. M., Manning, G., et al. (2009). Cyclin-dependent kinases: a family portrait. Nat. Cell Biol. 11, 1275–1276. doi: 10.1038/ncb1109-1275 Martinez, L. A. (2016). Mutant p53 and ETS2, a Tale of Reciprocity. Front. Oncol. 6:35. doi: 10.3389/fonc.2016.00035 Mueller, D., Totzke, F., Weber, T., Beisenherz-Huss, C., Kraemer, D., Heidemann-Dinger, C., et al. (2016). Characterization of CDK inhibitors in a biochemical assay using a comprehensive panel of human CDK-cyclin complexes. Cancer Res. 76, Abstract nr 2821 retrieved from the Proceedings of the 107th Annual Meeting of the American Association for Cancer Research. doi: 10.1158/1538-7445.AM2016-2821 Olson, C. M., Jiang, B., Erb, M. A., Liang, Y., Doctor, Z. M., Zhang, Z., et al. (2018). Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat. Chem. Biol. 14, 163–170. doi: 10.1038/nchembi o.2538 Oprea, T. I., Bologa, C. G., Brunak, S., Campbell, A., Gan, G. N., Gaulton, A., et al. (2018). Unexplored therapeutic opportunities in the human genome. Nat. Rev. Drug Discov. 17, 317–332. doi: 10.1038/nrd.2018.14 Paculova, H., and Kohoutek, J. (2017). The emerging roles of CDK12 in tumorigenesis. Cell Div. 12:7. doi: 10.1186/s13008-017-0033-x Parry, D., Guzi, T., Shanahan, F., Davis, N., Prabhavalkar, D., Wiswell, D., et al. (2010). Dinaciclib (SCH 727965), a novel and potent cyclin-dependent kinase inhibitor. Mol. Cancer Ther. 9, 2344–2353. doi: 10.1158/1535-7163.MCT-10-0324 Roskoski, R. Jr. (2019). Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs. Pharmacol. Res. 139, 471–488. doi: 10.1016/j.phrs.2018.11.035 Schettini, F., De Santo, I., Rea, C. G., De Placido, P., Formisano, L., Giuliano, M., et al. (2018). CDK 4/6 inhibitors as single agent in advanced solid tumors. Front. Oncol. 8:608. doi: 10.3389/fonc.2018.00608 Squires, M. S., Feltell, R. E., Wallis, N. G., Lewis, E. J., Smith, D. M., Cross, D. M., et al. (2009). Biological characterization of AT7519, a small-molecule inhibitor of cyclin-dependent kinases, in human tumor cell lines. Mol. Cancer Ther. 8, 324–332. doi: 10.1158/1535-7163.MCT-08-0890 Turk, B. E., Hutti, J. E., and Cantley, L. C. (2006). Determining protein kinase substrate specificity by parallel solution-phase assay of large numbers of peptide substrates. Nat. Protoc. 1, 375–379. doi: 10.1038/nprot.2 006.57 Unger, S., Bohm, D., Kaiser, F. J., Kaulfuss, S., Borozdin, W., Buiting, K., et al. (2008). Mutations in the cyclin family member FAM58A cause an X-linked dominant disorder characterized by syndactyly, telecanthus and anogenital and renal malformations. Nat. Genet. 40, 287–289. doi: 10.1038/ng.86 van den Heuvel, S., and Harlow, E. (1993). Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262, 2050–2054. doi: 10.1126/science.8266103 Weiswald, L. B., Hasan, M. R., Wong, J. C. T., Pasiliao, C. C., Rahman, M., Ren, J., et al. (2017). Inactivation of the kinase domain of CDK10 prevents tumor growth in a preclinical model of colorectal cancer, and is accompanied by downregulation of Bcl-2. Mol. Cancer Ther. 16, 2292–2303. doi: 10.1158/1535-7163.MCT-16-0666 Windpassinger, C., Piard, J., Bonnard, C., Alfadhel, M., Lim, S., Bisteau, X., et al. (2017). CDK10 mutations in humans and mice cause severe growth retardation, spine malformations, and developmental delays. Am. J. Hum. Genet. 101, 391–403. doi: 10.1016/j.ajhg.2017.08.003 You, Y., Bai, F., Ye, Z., Zhang, N., Yao, L., Tang, Y., et al. (2018). Downregulated CDK10 expression in gastric cancer: association with tumor progression and poor prognosis. Mol. Med. Rep. 17, 6812–6818. doi: 10.3892/mmr.2018.8662 You, Y., Li, H., Qin, X., Zhang, Y., Song, W., Ran, Y., et al. (2015). Decreased CDK10 expression correlates with lymph node metastasis and predicts poor outcome in breast cancer patients - a short report. Cell. Oncol. 38, 485–491. doi: 10.1007/s13402-015-0246-4 You, Y., Yang, W., Wang, Z., Zhu, H., Li, H., Lin, C., et al. (2013). Promoter hypermethylation contributes to the frequent suppression of the CDK10 gene in human nasopharyngeal carcinomas. Cell. Oncol. 36, 323–331. doi: 10.1007/s13402-013-0137-5 Yu, J. H., Zhong, X. Y., Zhang, W. G., Wang, Z. D., Dong, Q., Tai, S., et al. (2012). CDK10 functions as a tumor suppressor gene and regulates survivability of biliary tract cancer cells. Oncol. Rep. 27, 1266–1276. doi: 10.3892/or.2011. 1617 Zegzouti, H., Zdanovskaia, M., Hsiao, K., and Goueli, S. A. (2009). ADP-Glo: A Bioluminescent and homogeneous ADP monitoring assay for kinases. Assay Drug Dev. Technol. 7, 560–572. doi: 10.1089/adt.2009.0222 Zhang, H., Pandey, S., Travers, M., Sun, H., Morton, G., Madzo, J., et al. (2018). Targeting CDK9 Reactivates Epigenetically Silenced Genes in Cancer. Cell 175, 1244–1258 e26. doi: 10.1016/j.cell.2018.09.051 Zhao, B. W., Chen, S., Li, Y. F., Xiang, J., Zhou, Z. W., Peng, J. S., et al. (2017). Low expression of CDK10 correlates with adverse prognosis in gastric carcinoma. J. Cancer 8, 2907–2914. doi: 10.7150/jca.20142 Zhong, X. Y., Xu, X. X., Yu, J. H., Jiang, G. X., Yu, Y., Tai, S., et al. (2012). Clinical and biological significance of Cdk10 in hepatocellular carcinoma. Gene 498, 68–74. doi: 10.1016/j.gene.2012.01.022 Conflict of Interest: LC is a founder and member of the SAB of Agios Pharmaceuticals and of Petra Pharmaceuticals. These companies are developing novel therapies for cancer. LC’s laboratory also receives some financial support from Petra Pharmaceuticals. SB is a founder and a member of the SAB of SeaBeLife Biotech, which is developing novel therapies for liver and kidney acute disorders. We thank la Ligue contre le Cancer Grand Ouest for their financial support. We thank IBiSA (French infrastructures for biology, health sciences and agronomy) and Biogenouest (Western France life science and environment core facility network) for supporting the KISSf screening facility. We thank Jane Endicott for the generous gift of baculoviruses directing the expression of MBP-CDK9 and GST-CycT1. We thank Carly Gamble for the construction of the pFastBacDual: GST-CDK10/Strep2-CycM plasmid.

FundersFunder number
Biogenouest (Western France life science and environment core facility networkGST-CycT1
Carly GambleGST-CDK10
Ligue contre le Cancer Grand Ouest
Petra Pharmaceuticals
Infrastructures en Biologie Santé et Agronomie
Ligue Contre le Cancer

    Keywords

    • CDK10
    • CDK10tide
    • Cyclin M
    • NVP-2
    • kinase inhibitors
    • screening assay

    Fingerprint

    Dive into the research topics of 'Development of a CDK10/CycM in vitro Kinase Screening Assay and Identification of First Small-Molecule Inhibitors'. Together they form a unique fingerprint.

    Cite this