Detection of organic nanoparticles within tissues using optical iterative method

Inbar Yariv, Dror Fixler, Rachel Lubart, Hamootal Duadi, Anat Lipovsky

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Various techniques for recovering optical parameters were developed over the years. However each has its limitations, constraints and disadvantages (e.g. accuracy, computational speed, sample assembly, distinguishing between the different parameters, etc.). This research suggests an optical technique for extracting the reduced scattering coefficient (μs') of substances by examining the light transmission through or reflection from them. It uses the multiple planes Gerchberg- Saxton (G-S) algorithm to reconstruct the light phase created by the substance. At the end of the algorithm, μs' can be estimated from the standard deviation (STD) of the retrieved phase of the reemitted light. We will use the theory to compute the phase's STD that directly correlated to the optical properties of different substances. Two possible applications for this technique, out of many others, are nanoparticles (NPs) penetration depth determination, for promoting topical medications, and detection of milk components quantitative signature as en route to milk content monitoring tool. For the former application, three materials were fabricated into NPs and all presented an activity enhancement with their size reduction. Then the NPs were applied on tissues and detected by our technique. For the latter, different milk content concentrations were examined resulting with different STD values suggesting it can be used as indicator for the milk component concentrations.

Original languageEnglish
Title of host publicationNanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIII
EditorsAlexander N. Cartwright, Dan V. Nicolau
PublisherSPIE
ISBN (Electronic)9781628419559
DOIs
StatePublished - 2016
EventNanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIII - San Francisco, United States
Duration: 15 Feb 201617 Feb 2016

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume9721
ISSN (Print)1605-7422

Conference

ConferenceNanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIII
Country/TerritoryUnited States
CitySan Francisco
Period15/02/1617/02/16

Bibliographical note

Publisher Copyright:
© 2016 SPIE.

Keywords

  • Gerchberg-Saxton algorithm
  • light and tissue interaction
  • milk content
  • nanomaterials
  • optical iterative method
  • optical properties
  • scattering
  • turbid media

Fingerprint

Dive into the research topics of 'Detection of organic nanoparticles within tissues using optical iterative method'. Together they form a unique fingerprint.

Cite this