Density functional theory study of nitrous oxide decomposition over Fe- and Co-ZSM-5

Jason A. Ryder, Arup K. Chakraborty, Alexis T. Bell

Research output: Contribution to journalArticlepeer-review

106 Scopus citations

Abstract

Iron- and cobalt-exchanged ZSM-5 are active catalysts for the dissociation of nitrous oxide. In this study, density functional theory was used to assess a possible reaction pathway for the catalytic dissociation of N2O. The active center was taken to be mononuclear [FeO]+ or [CoO]+, and the surrounding portion of the zeolite was represented by a 24-atom cluster. The first step of N2O decomposition involves the formation of [FeO2]+ or [CoO2]+ and the release of N2. The metal-oxo species produced in this step then reacts with N2O again, to release N2 and O2. The apparent activation energies for N2O dissociation in Fe-ZSM-5 and Co- ZSM-5 are 39.4 and 34.6 kcal/mol, respectively. The preexponential factor for the apparent first-order rate coefficient is estimated to be of the order 107 s-1 Pa1-. Although the calculated activation energy for Fe- ZSM-5 is in good agreement with that measured experimentally, the value of the preexponential factor is an order of magnitude smaller than that observed. The calculated activation energy for Co-ZSM-5 is higher than that reported experimentally. However, consistent with experiment, the rate of N2O decomposition on Co-ZSM-5 is predicted to be significantly higher than that on Fe-ZSM-5.

Original languageEnglish
Pages (from-to)7059-7064
Number of pages6
JournalJournal of Physical Chemistry B
Volume106
Issue number28
DOIs
StatePublished - Jul 2002
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2002 American Chemical Society.

Fingerprint

Dive into the research topics of 'Density functional theory study of nitrous oxide decomposition over Fe- and Co-ZSM-5'. Together they form a unique fingerprint.

Cite this