Abstract
Recent research has uncovered a remarkable ability to manipulate and control electromagnetic fields to produce effects such as perfect imaging and spatial cloaking. To achieve spatial cloaking, the index of refraction is manipulated to flow light from a probe around an object in such a way that a 'hole' in space is created, and the object remains hidden. Alternatively, it may be desirable to cloak the occurrence of an event over a finite time period, and the idea of temporal cloaking has been proposed in which the dispersion of the material is manipulated in time, producing a 'time hole' in the probe beam to hide the occurrence of the event from the observer. This approach is based on accelerating the front part of a probe light beam and slowing down its rear part to create a well controlled temporal gap-inside which an event occurs-such that the probe beam is not modified in any way by the event. The probe beam is then restored to its original form by the reverse manipulation of the dispersion. Here we present an experimental demonstration of temporal cloaking in an optical fibre-based system by applying concepts from the space-time duality between diffraction and dispersive broadening. We characterize the performance of our temporal cloak by detecting the spectral modification of a probe beam due to an optical interaction and show that the amplitude of the event (at the picosecond timescale) is reduced by more than an order of magnitude when the cloak is turned on. These results are a significant step towards the development of full spatio-temporal cloaking.
Original language | English |
---|---|
Pages (from-to) | 62-65 |
Number of pages | 4 |
Journal | Nature |
Volume | 481 |
Issue number | 7379 |
DOIs | |
State | Published - 4 Jan 2012 |
Externally published | Yes |
Bibliographical note
Funding Information:Acknowledgements We thank D. J. Gauthier for his comments. This work was supported by the Defence Advanced Research Project Agency and by the Center for Nanoscale Systems, supported by the National Science Foundation for Science, Technology, and Innovation (NYSTAR).
Funding
Acknowledgements We thank D. J. Gauthier for his comments. This work was supported by the Defence Advanced Research Project Agency and by the Center for Nanoscale Systems, supported by the National Science Foundation for Science, Technology, and Innovation (NYSTAR).
Funders | Funder number |
---|---|
Center for Nanoscale Systems | |
Defence Advanced Research Project Agency | |
National Science Foundation for Science, Technology, and Innovation | |
Empire State Development's Division of Science, Technology and Innovation |