DeepOrigin: End-To-End Deep Learning for Detection of New Malware Families

Ilay Cordonsky, Ishai Rosenberg, Guillaume Sicard, Eli Omid David

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

15 Scopus citations

Abstract

In this paper, we present a novel method of differentiating known from previously unseen malware families. We utilize transfer learning by learning compact file representations that are used for a new classification task between previously seen malware families and novel ones. The learned file representations are composed of static and dynamic features of malware files and are invariant to small modifications that do not change the malware functionality. Using an extensive dataset that consists of thousands of variants of malicious files, we were able to achieve 97.7% accuracy when classifying between seen and unseen malware families. Our method provides an important focalizing tool for cybersecurity researchers and greatly improves the overall ability to adapt to the fast-moving pace of the current threat landscape.

Original languageEnglish
Title of host publication2018 International Joint Conference on Neural Networks, IJCNN 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781509060146
DOIs
StatePublished - 10 Oct 2018
Externally publishedYes
Event2018 International Joint Conference on Neural Networks, IJCNN 2018 - Rio de Janeiro, Brazil
Duration: 8 Jul 201813 Jul 2018

Publication series

NameProceedings of the International Joint Conference on Neural Networks
Volume2018-July

Conference

Conference2018 International Joint Conference on Neural Networks, IJCNN 2018
Country/TerritoryBrazil
CityRio de Janeiro
Period8/07/1813/07/18

Bibliographical note

Publisher Copyright:
© 2018 IEEE.

Fingerprint

Dive into the research topics of 'DeepOrigin: End-To-End Deep Learning for Detection of New Malware Families'. Together they form a unique fingerprint.

Cite this