TY - JOUR
T1 - Deep-Subwavelength Resonant Meta-Optics Enabled by Ultra-High Index Topological Insulators
AU - Singh, Danveer
AU - Nandi, Sukanta
AU - Fleger, Yafit
AU - Cohen, Shany Z.
AU - Lewi, Tomer
N1 - Publisher Copyright:
© 2023 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH.
PY - 2023/9
Y1 - 2023/9
N2 - In nanophotonics, small mode volumes, high-quality factor resonances, and large field enhancements without metals fundamentally scale with the refractive index and are key for many implementations involving light-matter interactions. Topological insulators (TIs) are a class of insulating materials that host topologically protected surface states, some of which exhibit extraordinarily high permittivity values. Here, the optical properties of TI bismuth telluride (Bi2Te3) single crystals are studied. It is found that both the bulk and surface states contribute to the extremely large optical constants, with the real part of the refractive index peaking at n ≈ 11. Utilizing these ultra-high index values, it is demonstrated that Bi2Te3 metasurfaces are capable of squeezing light in deep-subwavelength structures, with the fundamental magnetic dipole (MD) resonance confined in unit cell sizes smaller than λ/10. It is further shown that dense ultrathin metasurface arrays can simultaneously provide large magnetic and electric field enhancements arising from the high index of the bulk and the surface metallic states. These findings demonstrate the potential of chalcogenide TIs as a platform leveraging the unique combination of ultra-high-index dielectric response with surface metallic states for metamaterial design and nanophotonic applications in sensing, non-linear generation, and quantum information.
AB - In nanophotonics, small mode volumes, high-quality factor resonances, and large field enhancements without metals fundamentally scale with the refractive index and are key for many implementations involving light-matter interactions. Topological insulators (TIs) are a class of insulating materials that host topologically protected surface states, some of which exhibit extraordinarily high permittivity values. Here, the optical properties of TI bismuth telluride (Bi2Te3) single crystals are studied. It is found that both the bulk and surface states contribute to the extremely large optical constants, with the real part of the refractive index peaking at n ≈ 11. Utilizing these ultra-high index values, it is demonstrated that Bi2Te3 metasurfaces are capable of squeezing light in deep-subwavelength structures, with the fundamental magnetic dipole (MD) resonance confined in unit cell sizes smaller than λ/10. It is further shown that dense ultrathin metasurface arrays can simultaneously provide large magnetic and electric field enhancements arising from the high index of the bulk and the surface metallic states. These findings demonstrate the potential of chalcogenide TIs as a platform leveraging the unique combination of ultra-high-index dielectric response with surface metallic states for metamaterial design and nanophotonic applications in sensing, non-linear generation, and quantum information.
KW - Bismuth telluride
KW - deep-subwavelength
KW - dielectric metasurfaces
KW - high refractive index
KW - topological insulators
UR - http://www.scopus.com/inward/record.url?scp=85166022027&partnerID=8YFLogxK
U2 - 10.1002/lpor.202200841
DO - 10.1002/lpor.202200841
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85166022027
SN - 1863-8880
VL - 17
JO - Laser and Photonics Reviews
JF - Laser and Photonics Reviews
IS - 9
M1 - 2200841
ER -