Abstract
An increasingly important process of the internet age and the massive data era is file compression. One popular compression scheme, Lempel-Ziv-Welch (LZW), maintains a dictionary of previously seen strings. The dictionary is updated throughout the parsing process by adding new encountered substrings. Klein, Opalinsky and Shapira (2019) recently studied the option of selectively updating the LZW dictionary. They show that even inserting only a random subset of the strings into the dictionary does not adversely affect the compression ratio. Inspired by their approach, we propose a reinforcement learning based agent, RLZW, that decides when to add a string to the dictionary. The agent is first trained on a large set of data, and then tested on files it has not seen previously (i.e., the test set). We show that on some types of input data, RLZW outperforms the compression ratio of a standard LZW.
Original language | English |
---|---|
Title of host publication | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
Publisher | Association for the Advancement of Artificial Intelligence |
Pages | 15857-15858 |
Number of pages | 2 |
ISBN (Electronic) | 9781713835974 |
DOIs | |
State | Published - 2021 |
Externally published | Yes |
Event | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online Duration: 2 Feb 2021 → 9 Feb 2021 |
Publication series
Name | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
---|---|
Volume | 18 |
Conference
Conference | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
---|---|
City | Virtual, Online |
Period | 2/02/21 → 9/02/21 |
Bibliographical note
Publisher Copyright:Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved
Funding
This work was supported by the Ministry of Science & Technology, Israel and by the Data Science and Artificial Intelligence Center of Ariel University.
Funders | Funder number |
---|---|
Data Science and Artificial Intelligence Center of Ariel University | |
Ministry of science and technology, Israel |