Abstract
In this study, we present a weak-supervised deep neural network-based tracking algorithm for a moving source. A triplet-loss network is trained with instantaneous spatial features to estimate the time-varying DOA. The core idea is to minimize the use of labeled samples (i.e. samples which are accurately localized, and difficult to acquire) by using instead partial knowledge drawn from an unlabeled, and much larger, dataset in which only the relative spatial ordering between the samples is known. We use a deep learning architecture that stochastically combines a triplet-ranking loss for the unlabeled samples and a spatial loss for the labelled samples and learns a nonlinear deep embedding that maps acoustic features to an azimuth angle of the source. We show that it is unnecessary to train the network with a large number of random trajectories of a moving source, and that triplets of static sources from the same locus, which can be more easily acquired, are sufficient. A simulation study demonstrates the applicability of the proposed method to dynamic problems.
Original language | English |
---|---|
Title of host publication | 29th European Signal Processing Conference, EUSIPCO 2021 - Proceedings |
Publisher | European Signal Processing Conference, EUSIPCO |
Pages | 1020-1024 |
Number of pages | 5 |
ISBN (Electronic) | 9789082797060 |
DOIs | |
State | Published - 2021 |
Event | 29th European Signal Processing Conference, EUSIPCO 2021 - Dublin, Ireland Duration: 23 Aug 2021 → 27 Aug 2021 |
Publication series
Name | European Signal Processing Conference |
---|---|
Volume | 2021-August |
ISSN (Print) | 2219-5491 |
Conference
Conference | 29th European Signal Processing Conference, EUSIPCO 2021 |
---|---|
Country/Territory | Ireland |
City | Dublin |
Period | 23/08/21 → 27/08/21 |
Bibliographical note
Publisher Copyright:© 2021 European Signal Processing Conference. All rights reserved.
Funding
This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 871245. This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 871245.
Funders | Funder number |
---|---|
Horizon 2020 Framework Programme | 871245 |
Horizon 2020 |
Keywords
- Acoustic source tracking
- Deep embedding learning
- Relative transfer function
- Triplet-loss