TY - JOUR
T1 - Deep learning integrates histopathology and proteogenomics at a pan-cancer level
AU - Clinical Proteomic Tumor Analysis Consortium
AU - Wang, Joshua M.
AU - Hong, Runyu
AU - Demicco, Elizabeth G.
AU - Tan, Jimin
AU - Lazcano, Rossana
AU - Moreira, Andre L.
AU - Li, Yize
AU - Calinawan, Anna
AU - Razavian, Narges
AU - Schraink, Tobias
AU - Gillette, Michael A.
AU - Omenn, Gilbert S.
AU - An, Eunkyung
AU - Rodriguez, Henry
AU - Tsirigos, Aristotelis
AU - Ruggles, Kelly V.
AU - Ding, Li
AU - Robles, Ana I.
AU - Mani, D. R.
AU - Rodland, Karin D.
AU - Lazar, Alexander J.
AU - Liu, Wenke
AU - Fenyö, David
AU - Aguet, François
AU - Akiyama, Yo
AU - Anand, Shankara
AU - Anurag, Meenakshi
AU - Babur, Özgün
AU - Bavarva, Jasmin
AU - Birger, Chet
AU - Birrer, Michael J.
AU - Cantley, Lewis C.
AU - Cao, Song
AU - Carr, Steven A.
AU - Ceccarelli, Michele
AU - Chan, Daniel W.
AU - Chinnaiyan, Arul M.
AU - Cho, Hanbyul
AU - Chowdhury, Shrabanti
AU - Cieslik, Marcin P.
AU - Clauser, Karl R.
AU - Colaprico, Antonio
AU - Zhou, Daniel Cui
AU - da Veiga Leprevost, Felipe
AU - Day, Corbin
AU - Dhanasekaran, Saravana M.
AU - Domagalski, Marcin J.
AU - Dou, Yongchao
AU - Druker, Brian J.
AU - Edwards, Nathan
N1 - Publisher Copyright:
© 2023 The Author(s)
PY - 2023/9/19
Y1 - 2023/9/19
N2 - We introduce a pioneering approach that integrates pathology imaging with transcriptomics and proteomics to identify predictive histology features associated with critical clinical outcomes in cancer. We utilize 2,755 H&E-stained histopathological slides from 657 patients across 6 cancer types from CPTAC. Our models effectively recapitulate distinctions readily made by human pathologists: tumor vs. normal (AUROC = 0.995) and tissue-of-origin (AUROC = 0.979). We further investigate predictive power on tasks not normally performed from H&E alone, including TP53 prediction and pathologic stage. Importantly, we describe predictive morphologies not previously utilized in a clinical setting. The incorporation of transcriptomics and proteomics identifies pathway-level signatures and cellular processes driving predictive histology features. Model generalizability and interpretability is confirmed using TCGA. We propose a classification system for these tasks, and suggest potential clinical applications for this integrated human and machine learning approach. A publicly available web-based platform implements these models.
AB - We introduce a pioneering approach that integrates pathology imaging with transcriptomics and proteomics to identify predictive histology features associated with critical clinical outcomes in cancer. We utilize 2,755 H&E-stained histopathological slides from 657 patients across 6 cancer types from CPTAC. Our models effectively recapitulate distinctions readily made by human pathologists: tumor vs. normal (AUROC = 0.995) and tissue-of-origin (AUROC = 0.979). We further investigate predictive power on tasks not normally performed from H&E alone, including TP53 prediction and pathologic stage. Importantly, we describe predictive morphologies not previously utilized in a clinical setting. The incorporation of transcriptomics and proteomics identifies pathway-level signatures and cellular processes driving predictive histology features. Model generalizability and interpretability is confirmed using TCGA. We propose a classification system for these tasks, and suggest potential clinical applications for this integrated human and machine learning approach. A publicly available web-based platform implements these models.
KW - CPTAC
KW - cancer imaging
KW - cancer proteogenomics
KW - computational pathology
KW - molecular diagnostics
UR - http://www.scopus.com/inward/record.url?scp=85171478742&partnerID=8YFLogxK
U2 - 10.1016/j.xcrm.2023.101173
DO - 10.1016/j.xcrm.2023.101173
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 37582371
AN - SCOPUS:85171478742
SN - 2666-3791
VL - 4
JO - Cell Reports Medicine
JF - Cell Reports Medicine
IS - 9
M1 - 101173
ER -