TY - JOUR
T1 - Decadal biogeochemical history of the south east Levantine basin
T2 - Simulations of the river Nile regimes
AU - Suari, Yair
AU - Brenner, Steve
N1 - Publisher Copyright:
© 2015 Elsevier B.V.
PY - 2015/8/1
Y1 - 2015/8/1
N2 - The south eastern Mediterranean is characterized by antiestuarine circulation which leads to extreme oligotrophic conditions. The Nile river that used to transport fresh water and nutrients into the basin was dammed in 1964 which led to a drastic reduction of fresh water fluxes, and later, changes in Egyptian agriculture and diet led to increased nutrient fluxes. In this paper we present the results of simulations with a biogeochemical model of the south eastern Mediterranean. Four experiments were conducted: (1) present day without riverine inputs; (2) Nile before damming (pre-1964); (3) post-damming 1995 Nile; and (4) fresh water and nutrient discharges of Israeli coastal streams. The present day input simulation (control run) successfully reproduced measured nutrient concentrations, with the exception of simulated chlorophyll concentrations which were slightly higher than observed. The pre-1964 Nile simulation showed a salinity reduction of 2. psu near the Egyptian coast and 0.5. psu along the Israeli coast, as well as elevated chlorophyll a concentrations mostly east of the Nile delta and north to Cyprus. The spring bloom extended from its present peak during February-March to a peak during February-May. The 1995 Nile simulation showed increased chlorophyll a concentrations close to the Egyptian coast. The Israeli coastal stream simulation showed that the effect of the Israeli coastal stream winter flow on chlorophyll converged to control concentrations within about one month, demonstrating the stability and sensitivity of the model to external forcing. The results of this study demonstrate the significance of fresh water fluxes in maintaining marine productivity, which may have large scale effects on the marine ecosystem.
AB - The south eastern Mediterranean is characterized by antiestuarine circulation which leads to extreme oligotrophic conditions. The Nile river that used to transport fresh water and nutrients into the basin was dammed in 1964 which led to a drastic reduction of fresh water fluxes, and later, changes in Egyptian agriculture and diet led to increased nutrient fluxes. In this paper we present the results of simulations with a biogeochemical model of the south eastern Mediterranean. Four experiments were conducted: (1) present day without riverine inputs; (2) Nile before damming (pre-1964); (3) post-damming 1995 Nile; and (4) fresh water and nutrient discharges of Israeli coastal streams. The present day input simulation (control run) successfully reproduced measured nutrient concentrations, with the exception of simulated chlorophyll concentrations which were slightly higher than observed. The pre-1964 Nile simulation showed a salinity reduction of 2. psu near the Egyptian coast and 0.5. psu along the Israeli coast, as well as elevated chlorophyll a concentrations mostly east of the Nile delta and north to Cyprus. The spring bloom extended from its present peak during February-March to a peak during February-May. The 1995 Nile simulation showed increased chlorophyll a concentrations close to the Egyptian coast. The Israeli coastal stream simulation showed that the effect of the Israeli coastal stream winter flow on chlorophyll converged to control concentrations within about one month, demonstrating the stability and sensitivity of the model to external forcing. The results of this study demonstrate the significance of fresh water fluxes in maintaining marine productivity, which may have large scale effects on the marine ecosystem.
KW - Biogeochemical model
KW - Levantine basin
KW - Nile river
UR - http://www.scopus.com/inward/record.url?scp=84923914070&partnerID=8YFLogxK
U2 - 10.1016/j.jmarsys.2015.02.004
DO - 10.1016/j.jmarsys.2015.02.004
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
SN - 0924-7963
VL - 148
SP - 112
EP - 121
JO - Journal of Marine Systems
JF - Journal of Marine Systems
ER -