De-novo protein function prediction using DNA binding and RNA binding proteins as a test case

Sapir Peled, Olga Leiderman, Rotem Charar, Gilat Efroni, Yaron Shav-Tal, Yanay Ofran

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Of the currently identified protein sequences, 99.6% have never been observed in the laboratory as proteins and their molecular function has not been established experimentally. Predicting the function of such proteins relies mostly on annotated homologs. However, this has resulted in some erroneous annotations, and many proteins have no annotated homologs. Here we propose a de-novo function prediction approach based on identifying biophysical features that underlie function. Using our approach, we discover DNA and RNA binding proteins that cannot be identified based on homology and validate these predictions experimentally. For example, FGF14, which belongs to a family of secreted growth factors was predicted to bind DNA. We verify this experimentally and also show that FGF14 is localized to the nucleus. Mutating the predicted binding site on FGF14 abrogated DNA binding. These results demonstrate the feasibility of automated de-novo function prediction based on identifying function-related biophysical features.

Original languageEnglish
Article number13424
JournalNature Communications
Volume7
DOIs
StatePublished - 21 Nov 2016

Bibliographical note

Publisher Copyright:
© The Author(s) 2016.

Fingerprint

Dive into the research topics of 'De-novo protein function prediction using DNA binding and RNA binding proteins as a test case'. Together they form a unique fingerprint.

Cite this