De Novo Development of Mitochondria-Targeted Molecular Probes Targeting Pink1

Shulamit Fluss Ben-Uliel, Faten Habrat Zoabi, Moriya Slavin, Hadas Sibony-Benyamini, Nir Kalisman, Nir Qvit

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Mitochondria play central roles in maintaining cellular metabolic homeostasis, cell survival and cell death, and generate most of the cell’s energy. Mitochondria maintain their homeostasis by dynamic (fission and fusion) and quality control mechanisms, including mitophagy, the removal of damaged mitochondria that is mediated mainly by the Pink1/Parkin pathway. Pink1 is a serine/threonine kinase which regulates mitochondrial function, hitherto many molecular mechanisms underlying Pink1 activity in mitochondrial homeostasis and cell fate remain unknown. Peptides are vital biological mediators that demonstrate remarkable potency, selectivity, and low toxicity, yet they have two major limitations, low oral bioavailability and poor stability. Herein, we rationally designed a linear peptide that targets Pink1 and, using straightforward chemistry, we developed molecular probes with drug-like properties to further characterize Pink1. Initially, we conjugated a cell-penetrating peptide and a cross-linker to map Pink1’s 3D structure and its interaction sites. Next, we conjugated a fluorescent dye for cell-imaging. Finally, we developed cyclic peptides with improved stability and binding affinity. Overall, we present a facile approach to con-verting a non-permeable linear peptide into a research tool possessing important properties for therapeutics. This is a general approach using straightforward chemistry that can be tailored for various applications by numerous laboratories.

Original languageEnglish
Article number6076
JournalInternational Journal of Molecular Sciences
Volume23
Issue number11
DOIs
StatePublished - 28 May 2022

Bibliographical note

Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Funding

Funding: This research was funded by the Israel Science Foundation (ISF), research grant no. 935/20 to N.Q. The authors would like to thank Yoav Luxembourg for his generous support. We also wish to acknowledge the help rendered by Avraham Samson for helpful guidance in docking analysis.

FundersFunder number
Israel Science Foundation935/20

    Keywords

    • Pink1
    • backbone cyclization
    • bioactive peptides
    • mitochondria
    • mitophagy
    • molecular probes
    • peptidomimetics
    • protein-peptide interactions
    • protein-protein interactions
    • therapeutic peptides

    Fingerprint

    Dive into the research topics of 'De Novo Development of Mitochondria-Targeted Molecular Probes Targeting Pink1'. Together they form a unique fingerprint.

    Cite this