Cytokine Patterns in COVID-19 Patients: Which Cytokines Predict Mortality and Which Protect Against?

Maamoun Basheer, Elias Saad, Majd Kananeh, Layyous Asad, Osama Khayat, Anan Badarne, Zaki Abdo, Nada Arraf, Faris Milhem, Tamara Bassal, Mariana Boulos, Nimer Assy

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

(1) Background/Aim: People infected with SARS-CoV-2 may develop COVID-19 in a wide range of clinical severity. Pulmonary fibrosis is characterized by several grades of chronic inflammation and collagen deposition in the interalveolar space. SARS-CoV-2 infection has been demonstrated to cause lung fibrosis without a currently elucidated mechanism. Some studies emphasize the role of proinflammatory cytokines. This research studies the correlation of the released cytokines with mortality or lung injury in COVID-19 patients. (2) Methods: Electronic medical record data from 40 patients diagnosed with COVID-19 in the COVID-19 Department, Galilee Medical Center, Nahariya, Israel, were collected. Epidemiological, clinical, laboratory, and imaging variables were analyzed. The cytokine levels were measured upon admission and discharge. A correlation between cytokine levels and severity and mortality or lung involvement was undertaken. (3) Results: IFN-gamma and IL-10 are the most powerful risk factors for mortality in the COVID-19 patient groups in a multivariate analysis. However, in a univariate analysis, TGF-β, CXCL-10, IFN gamma, and IL-7 affected mortality in COVID-19 patients. MMP-7 was significantly correlated with a cytokine storm and a high 4-C (severity) score in COVID-19 patients. MMP-7, TGF-β, IL-10, IL-7, TNF-α, and IL-6 were correlated with high lung involvement in COVID-19 patients. Serum concentrations of IGF-1 were significantly increased upon discharge, but MMP-7 was decreased. (4) Conclusions: Proinflammatory cytokines predict clinical severity, lung fibrosis, and mortality in COVID-19 patients. High concentrations of TGF-β, CXCL-10, IL-10, IL-6, and TNF-α are correlated to severity and lung injury. However, certain cytokines have protective effects and higher levels of these cytokines increase survival levels and lower lung damage. High levels of INF-γ, IL-7, MMP-7, and IGF-1 have protection probabilities against lung injury and severity.

Original languageEnglish
Pages (from-to)4735-4747
Number of pages13
JournalCurrent Issues in Molecular Biology
Volume44
Issue number10
DOIs
StatePublished - 10 Oct 2022

Bibliographical note

Publisher Copyright:
© 2022 by the authors.

Keywords

  • MMP-7
  • cytokines
  • lung fibrosis
  • mortality
  • severity

Fingerprint

Dive into the research topics of 'Cytokine Patterns in COVID-19 Patients: Which Cytokines Predict Mortality and Which Protect Against?'. Together they form a unique fingerprint.

Cite this