Cu2Mo6S8 chevrel phase, a promising cathode material for new rechargeable Mg batteries: A mechanically induced chemical reaction

Elena Levi, Yossi Gofer, Yulia Vestfreed, Eli Lancry, Doron Aurbach

Research output: Contribution to journalArticlepeer-review

76 Scopus citations

Abstract

This paper deals with the correlation between the real structure of Cu2Mo6S8 chevrel phase (CuCP) and its electrochemical behavior as a cathode material in novel, promising rechargeable Mg batteries. To obtain fast kinetics of Mg insertion into this material, its particle size was reduced to sub-micrometer scale by milling. We discovered an unusual instability of CuCP upon milling, which leads to a drastic decrease in the electrode capacity. The mechanism of this mechanical instability was investigated by XRD and XPS. The comparison of the CuCP mechanical stability with that of other chevrel phases (Ni, Sn, Pb, or Ag instead of Cu) reveals that the unusual behavior of CuCP is connected to the unstable oxidation state of the copper ions in this material. It was shown that milling of CuCP leads not only to an unusually deep amorphization of the material but also to a chemical reaction in which the Cu+ ions are reduced and removed from the CuCP lattice.

Original languageEnglish
Pages (from-to)2767-2773
Number of pages7
JournalChemistry of Materials
Volume14
Issue number6
DOIs
StatePublished - 2002

Fingerprint

Dive into the research topics of 'Cu2Mo6S8 chevrel phase, a promising cathode material for new rechargeable Mg batteries: A mechanically induced chemical reaction'. Together they form a unique fingerprint.

Cite this