TY - JOUR
T1 - Cramér-Rao Bound Analysis of Reverberation Level Estimators for Dereverberation and Noise Reduction
AU - Schwartz, Ofer
AU - Gannot, Sharon
AU - Habets, Emanuel A.P.
N1 - Publisher Copyright:
© 2014 IEEE.
PY - 2017/8
Y1 - 2017/8
N2 - The reverberation power spectral density (PSD) is often required for dereverberation and noise reduction algorithms. In this work, we compare two maximum likelihood (ML) estimators of the reverberation PSD in a noisy environment. In the first estimator, the direct path is first blocked. Then, the ML criterion for estimating the reverberation PSD is stated according to the probability density function of the blocking matrix (BM) outputs. In the second estimator, the speech component is not blocked. Instead, the ML criterion for estimating the speech and reverberation PSD is stated according to the probability density function of the microphone signals. To compare the expected mean square error (MSE) between the two ML estimators of the reverberation PSD, the Cramér-Rao Bounds (CRBs) for the two ML estimators are derived. We show that the CRB for the joint reverberation and speech PSD estimator is lower than the CRB for estimating the reverberation PSD from the BM outputs. Experimental results show that the MSE of the two estimators indeed obeys the CRB curves. Experimental results of multimicrophone dereverberation and noise reduction algorithm show the benefits of using the ML estimators in comparison with another baseline estimators.
AB - The reverberation power spectral density (PSD) is often required for dereverberation and noise reduction algorithms. In this work, we compare two maximum likelihood (ML) estimators of the reverberation PSD in a noisy environment. In the first estimator, the direct path is first blocked. Then, the ML criterion for estimating the reverberation PSD is stated according to the probability density function of the blocking matrix (BM) outputs. In the second estimator, the speech component is not blocked. Instead, the ML criterion for estimating the speech and reverberation PSD is stated according to the probability density function of the microphone signals. To compare the expected mean square error (MSE) between the two ML estimators of the reverberation PSD, the Cramér-Rao Bounds (CRBs) for the two ML estimators are derived. We show that the CRB for the joint reverberation and speech PSD estimator is lower than the CRB for estimating the reverberation PSD from the BM outputs. Experimental results show that the MSE of the two estimators indeed obeys the CRB curves. Experimental results of multimicrophone dereverberation and noise reduction algorithm show the benefits of using the ML estimators in comparison with another baseline estimators.
KW - array processing
KW - dereverberation
KW - diffuse noise
KW - noise reduction
UR - http://www.scopus.com/inward/record.url?scp=85028427075&partnerID=8YFLogxK
U2 - 10.1109/TASLP.2017.2696308
DO - 10.1109/TASLP.2017.2696308
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85028427075
SN - 2329-9290
VL - 25
SP - 1680
EP - 1693
JO - IEEE/ACM Transactions on Audio Speech and Language Processing
JF - IEEE/ACM Transactions on Audio Speech and Language Processing
IS - 8
ER -