Abstract
The correlation between MWCNT aspect ratio and the quasi-static and dynamic mechanical properties of composites of MWCNTs and PMMA was studied for relatively long MWCNT lengths, in the range 0.3 mm to 5 mm (aspect ratios up to 5 ×105) and at low loading (0.15 wt%). The height of the MWCNTs prepared were modulated by controlling the amount of water vapour introduced in the reactor limiting Ostwald ripening of the catalyst, the formation of amorphous carbon and any increase in CNT diameter. The Tg of PMMA increased by up to 4 °C on addition of the longest tubes as they have the ability to form physical junctions with the polymer chains which lead to enhanced PMMA-MWCNTs interactions and increased mechanical properties, Young's modulus by 20% on addition of 5 mm long MWCNTs. Predictions of the Young's modulus of the composites of PMMA and MWCNT with the Mori-Tanaka theory show that future micromechanical models should account for MWCNT agglomeration and polymer-nanotube interactions as a function of CNT length.
Original language | English |
---|---|
Article number | 045305 |
Journal | Materials Research Express |
Volume | 5 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2018 |
Bibliographical note
Publisher Copyright:© 2018 IOP Publishing Ltd.
Keywords
- MWCNTs
- PMMA
- aspect ratio
- composites
- mechanical properties