Abstract
Using multiplexed quantitative proteomics, we analyzed cell cycledependent changes of the human proteome. We identified >4,400 proteins, each with a six-point abundance profile across the cell cycle. Hypothesizing that proteins with similar abundance profiles are co-regulated, we clustered the proteins with abundance profiles most similar to known Anaphase-Promoting Complex/Cyclosome (APC/C) substrates to identify additional putative APC/C substrates. This protein profile similarity screening (PPSS) analysis resulted in a shortlist enriched in kinases and kinesins. Biochemical studies on the kinesins confirmed KIFC1, KIF18A, KIF2C, and KIF4A as APC/C substrates. Furthermore, we showed that the APC/CCDH1- dependent degradation of KIFC1 regulates the bipolar spindle formation and proper cell division. A targeted quantitative proteomics experiment showed that KIFC1 degradation is modulated by a stabilizing CDK1-dependent phosphorylation site within the degradation motif of KIFC1. The regulation of KIFC1 (de-)phosphorylation and degradation provides insights into the fidelity and proper ordering of substrate degradation by the APC/C during mitosis.
Original language | English |
---|---|
Pages (from-to) | 385-399 |
Number of pages | 15 |
Journal | EMBO Journal |
Volume | 33 |
Issue number | 4 |
DOIs | |
State | Published - 18 Feb 2014 |
Keywords
- Dynamic proteomics
- Protein profile similarity screening
- Quantitative proteomics
- TMT-labeling
- Ubiquitination-dependent protein degradation