TY - JOUR
T1 - Coordinated phosphorylation of insulin receptor substrate-1 by glycogen synthase kinase-3 and protein kinase CβII in the diabetic fat tissue
AU - Liberman, Ziva
AU - Plotkin, Batya
AU - Tennenbaum, Tamar
AU - Eldar-Finkelman, Hagit
PY - 2008/6
Y1 - 2008/6
N2 - Serine/threonine phosphorylation of insulin receptor substrate-1 (IRS-1) is an important negative modulator of insulin signaling. Previously, we showed that glycogen synthase kinase-3 (GSK-3) phosphorylates IRS-1 at Ser 332. However, the fact that GSK-3 requires prephosphorylation of its substrates suggested that Ser336 on IRS-1 was the "priming" site phosphorylated by an as yet unknown protein kinase. Here, we sought to identify this "priming kinase" and to examine the phosphorylation of IRS-1 at Ser336 and Ser332 in physiologically relevant animal models. Of several stimulators, only the PKC activator phorbol ester PMA enhanced IRS-1 phosphorylation at Ser336. Treatment with selective PKC inhibitors prevented this PMA effect and suggested that a conventional PKC was the priming kinase. Overexpression of PKCα or PKCβII isoforms in cells enhanced IRS-1 phosphorylation at Ser336 and Ser332, and in vitro kinase assays verified that these two kinases directly phosphorylated IRS-1 at Ser336. The expression level and activation state of PKCβII, but not PKCα, were remarkably elevated in the fat tissues of diabetic ob/ob mice and in high-fat diet-fed mice compared with that from lean animals. Elevated levels of PKCβII were also associated with enhanced phosphorylation of IRS-1 at Ser336/332 and elevated activity of GSK-3β. Finally, adenoviral mediated expression of PKCβII in adipocytes enhancedphosphorylation of IRS-1 at Ser336. Taken together, our results suggest that IRS-1 is sequentially phosphorylated by PKCβII and GSK-3 at Ser336 and Ser332. Furthermore, these data provide evidence for the physiological relevance of these phosphorylation events in the pathogenesis of insulin resistance in fat tissue.
AB - Serine/threonine phosphorylation of insulin receptor substrate-1 (IRS-1) is an important negative modulator of insulin signaling. Previously, we showed that glycogen synthase kinase-3 (GSK-3) phosphorylates IRS-1 at Ser 332. However, the fact that GSK-3 requires prephosphorylation of its substrates suggested that Ser336 on IRS-1 was the "priming" site phosphorylated by an as yet unknown protein kinase. Here, we sought to identify this "priming kinase" and to examine the phosphorylation of IRS-1 at Ser336 and Ser332 in physiologically relevant animal models. Of several stimulators, only the PKC activator phorbol ester PMA enhanced IRS-1 phosphorylation at Ser336. Treatment with selective PKC inhibitors prevented this PMA effect and suggested that a conventional PKC was the priming kinase. Overexpression of PKCα or PKCβII isoforms in cells enhanced IRS-1 phosphorylation at Ser336 and Ser332, and in vitro kinase assays verified that these two kinases directly phosphorylated IRS-1 at Ser336. The expression level and activation state of PKCβII, but not PKCα, were remarkably elevated in the fat tissues of diabetic ob/ob mice and in high-fat diet-fed mice compared with that from lean animals. Elevated levels of PKCβII were also associated with enhanced phosphorylation of IRS-1 at Ser336/332 and elevated activity of GSK-3β. Finally, adenoviral mediated expression of PKCβII in adipocytes enhancedphosphorylation of IRS-1 at Ser336. Taken together, our results suggest that IRS-1 is sequentially phosphorylated by PKCβII and GSK-3 at Ser336 and Ser332. Furthermore, these data provide evidence for the physiological relevance of these phosphorylation events in the pathogenesis of insulin resistance in fat tissue.
KW - Insulin resistance
KW - Insulin signaling
KW - Obesity
UR - http://www.scopus.com/inward/record.url?scp=47549105527&partnerID=8YFLogxK
U2 - 10.1152/ajpendo.00050.2008
DO - 10.1152/ajpendo.00050.2008
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 18430969
AN - SCOPUS:47549105527
SN - 0193-1849
VL - 294
SP - E1169-E1177
JO - American Journal of Physiology - Endocrinology and Metabolism
JF - American Journal of Physiology - Endocrinology and Metabolism
IS - 6
ER -