Convexified Graph Neural Networks for Distributed Control in Robotic Swarms

Saar Cohen, Noa Agmon

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

A network of robots can be viewed as a signal graph, describing the underlying network topology with naturally distributed architectures, whose nodes are assigned to data values associated with each robot. Graph neural networks (GNNs) learn representations from signal graphs, thus making them well-suited candidates for learning distributed controllers. Oftentimes, existing GNN architectures assume ideal scenarios, while ignoring the possibility that this distributed graph may change along time due to link failures or topology variations, which can be found in dynamic settings. A mismatch between the graphs on which GNNs were trained and the ones on which they are tested is thus formed. Utilizing online learning, GNNs can be retrained at testing time, overcoming this issue. However, most online algorithms are centralized and work on convex problems (which GNNs scarcely lead to). This paper introduces novel architectures which solve the convexity restriction and can be easily updated in a distributed, online manner. Finally, we provide experiments, showing how these models can be applied to optimizing formation control in a swarm of flocking robots.

Original languageEnglish
Title of host publicationProceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI 2021
EditorsZhi-Hua Zhou
PublisherInternational Joint Conferences on Artificial Intelligence
Pages2307-2313
Number of pages7
ISBN (Electronic)9780999241196
StatePublished - 2021
Event30th International Joint Conference on Artificial Intelligence, IJCAI 2021 - Virtual, Online, Canada
Duration: 19 Aug 202127 Aug 2021

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823

Conference

Conference30th International Joint Conference on Artificial Intelligence, IJCAI 2021
Country/TerritoryCanada
CityVirtual, Online
Period19/08/2127/08/21

Bibliographical note

Funding Information:
This research was funded in part by ISF grant 2306/18.

Publisher Copyright:
© 2021 International Joint Conferences on Artificial Intelligence. All rights reserved.

Fingerprint

Dive into the research topics of 'Convexified Graph Neural Networks for Distributed Control in Robotic Swarms'. Together they form a unique fingerprint.

Cite this