TY - JOUR
T1 - Continuously Operating Laser Range Finder Based on Incoherent Pulse Compression
T2 - Noise Analysis and Experiment
AU - Arbel, N.
AU - Hirschbrand, L.
AU - Weiss, S.
AU - Levanon, N.
AU - Zadok, A.
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/4
Y1 - 2016/4
N2 - A continuously operating laser range-finder setup based on the incoherent compression of periodic binary unipolar sequences is analyzed and demonstrated experimentally. The periodic cross-correlation between the directly detected echoes and a properly chosen reference sequence exhibits perfect zero sidelobes. An approximate analytic model for the peak-to-noise-sidelobe ratio in the presence of additive detector noise is established. Tradeoffs among transmitted power, measurement range, aperture size, and acquisition time are addressed. Performance is compared against that of time-of-flight measurements, and scenarios in which each protocol is advantageous are discussed. Outdoor ranging measurements at a distance of 270-m and with a ranging resolution of 15 cm are reported. The range to a Lambertian reflector target at that distance could be measured using a peak transmission power of only 800 mW, at a low signal-to-noise ratio (SNR) of-25 dB and with an acquisition time of 50 μs.
AB - A continuously operating laser range-finder setup based on the incoherent compression of periodic binary unipolar sequences is analyzed and demonstrated experimentally. The periodic cross-correlation between the directly detected echoes and a properly chosen reference sequence exhibits perfect zero sidelobes. An approximate analytic model for the peak-to-noise-sidelobe ratio in the presence of additive detector noise is established. Tradeoffs among transmitted power, measurement range, aperture size, and acquisition time are addressed. Performance is compared against that of time-of-flight measurements, and scenarios in which each protocol is advantageous are discussed. Outdoor ranging measurements at a distance of 270-m and with a ranging resolution of 15 cm are reported. The range to a Lambertian reflector target at that distance could be measured using a peak transmission power of only 800 mW, at a low signal-to-noise ratio (SNR) of-25 dB and with an acquisition time of 50 μs.
KW - Fiber optics links and subsystems
KW - Laser range-finder
KW - Lidar
UR - http://www.scopus.com/inward/record.url?scp=84963946886&partnerID=8YFLogxK
U2 - 10.1109/JPHOT.2016.2528118
DO - 10.1109/JPHOT.2016.2528118
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84963946886
SN - 1943-0655
VL - 8
JO - IEEE Photonics Journal
JF - IEEE Photonics Journal
IS - 2
M1 - 7403845
ER -