Abstract
We introduce an inference technique to produce discriminative context-aware image captions (captions that describe differences between images or visual concepts) using only generic context-agnostic training data (captions that describe a concept or an image in isolation). For example, given images and captions of “siamese cat” and “tiger cat”, we generate language that describes the “siamese cat” in a way that distinguishes it from “tiger cat”. Our key novelty is that we show how to do joint inference over a language model that is context-agnostic and a listener which distinguishes closely-related concepts. We first apply our technique to a justification task, namely to describe why an image contains a particular fine-grained category as opposed to another closely-related category of the CUB-200-2011 dataset. We then study discriminative image captioning to generate language that uniquely refers to one of two semantically-similar images in the COCO dataset. Evaluations with discriminative ground truth for justification and human studies for discriminative image captioning reveal that our approach outperforms baseline generative and speaker-listener approaches for discrimination.
Original language | English |
---|---|
Title of host publication | Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1070-1079 |
Number of pages | 10 |
ISBN (Electronic) | 9781538604571 |
DOIs | |
State | Published - 6 Nov 2017 |
Externally published | Yes |
Event | 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States Duration: 21 Jul 2017 → 26 Jul 2017 |
Publication series
Name | Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 |
---|---|
Volume | 2017-January |
Conference
Conference | 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 |
---|---|
Country/Territory | United States |
City | Honolulu |
Period | 21/07/17 → 26/07/17 |
Bibliographical note
Publisher Copyright:© 2017 IEEE.