Contacting organic molecules by soft methods: Towards molecule-based electronic devices

Hossam Haick, David Cahen

Research output: Contribution to journalReview articlepeer-review

120 Scopus citations


(Figure Presented) Can we put organic molecules to use as electronic components? The answer to this question is to no small degree limited by the ability to contact them electrically without damaging the molecules. In this Account, we present some of the methods for contacting molecules that do not or minimally damage them and that allow formation of electronic junctions that can become compatible with electronics from the submicrometer to the macroscale. In "Linnaean" fashion, we have grouped contacting methods according to the following main criteria: (a) is a chemical bond is required between contact and molecule, and (b) is the contact "ready-made", that is, preformed, or prepared in situ? Contacting methods that, so far, seem to require a chemical bond include spin-coating a conductive polymer and transfer printing. In the latter, a metallic pattern on an elastomeric polymer is mechanically transferred to molecules with an exposed terminal group that can react chemically with the metal. These methods allow one to define structures from several tens of nanometers size upwards and to fabricate devices on flexible substrates, which is very difficult by conventional techniques. However, the requirement for bifunctionality severely restricts the type of molecules that can be used and can complicate their self-assembly into monolayers. Methods that rely on prior formation of the contact pad are represented by two approaches: (a) use of a liquid metal as electrode (e.g., Hg, Ga, various alloys), where molecules can be adsorbed on the liquid metal and the molecularly modified drop is brought into contact with the second electrode, the molecules can be adsorbed on the second electrode and then the liquid metal brought into contact with them, or bilayers are used, with a layer on both the metal and the second electrode and (b) use of preformed metal pads from a solid substrate and subsequent pad deposition on the molecules with the help of a liquid. These methods allow formation of contacts easily and rapidly and allow many types of monolayers and metals to be analyzed. However, in their present forms such approaches are not technologically practical. Direct in situ vacuum evaporation of metals has been used successfully only with bifunctional molecules because it is too invasive and damaging, in general. A more general approach is indirect vacuum evaporation, where the metal atoms and clusters, emitted from the source, reach the sample surface in an indirect line of sight, while cooled by multiple collisions with an inert gas. This method has clear technological possibilities, but more research is needed to increase deposition efficiency and find ways to characterize the molecules at the interface and to prevent metal penetration between molecules or through pinholes, also if molecules lack reactive termination groups. This Account stresses the advantages, weak points, and possible routes for the development of contacting methods. This way it shows that there is at present no one ideal soft contacting method, whether it is because of limitations and problems inherent in each of the methods or because of insufficient understanding of the interfacial chemistry and physics. Hopefully, this Account will present the latter issue as a research challenge to its readers.

Original languageEnglish
Pages (from-to)359-366
Number of pages8
JournalAccounts of Chemical Research
Issue number3
StatePublished - Mar 2008
Externally publishedYes


Dive into the research topics of 'Contacting organic molecules by soft methods: Towards molecule-based electronic devices'. Together they form a unique fingerprint.

Cite this