Abstract
Freezing of gait (FoG), a paroxysmal gait disturbance commonly experienced by patients with Parkinson’s disease (PD), is characterized by sudden episodes of inability to generate effective forward stepping. Recent studies have shown an increase in beta frequency of local-field potentials in the basal-ganglia during FoG, however, comprehensive research on the synchronization between different brain locations and frequency bands in PD patients is scarce. Here, by developing tools based on network science and non-linear dynamics, we analyze synchronization networks of electroencephalography (EEG) brain waves of three PD patient groups with different FoG severity. We find higher EEG amplitude synchronization (stronger network links) between different brain locations as PD and FoG severity increase. These results are consistent across frequency bands (theta, alpha, beta, gamma) and independent of the specific motor task (walking, still standing, hand tapping) suggesting that an increase in severity of PD and FoG is associated with stronger EEG networks over a broad range of brain frequencies. This observation of a direct relationship of PD/FoG severity with overall EEG synchronization together with our proposed EEG synchronization network approach may be used for evaluating FoG propensity and help to gain further insight into PD and the pathophysiology leading to FoG.
Original language | English |
---|---|
Article number | 1017 |
Journal | Communications Biology |
Volume | 4 |
Issue number | 1 |
DOIs | |
State | Published - 30 Aug 2021 |
Bibliographical note
Publisher Copyright:© 2021, The Author(s).
Funding
We thank the participants for their time and effort, and Mr. Or Koren for technical assistance and help with data analysis. This study was supported in part by the Israel Science Foundation (ISF-grant 1657-16), the German Israel Foundation (GIF-grants I-1298-415.13/2015 and I-1372-303.7/2016), and the Israel Ministry of Health (grant 3000-14527). M.G. acknowledges support from a Minerva Research Grant. S.H. acknowledges financial support from the Israel Science Foundation, the China-Israel Science Foundation, the ONR, the BIU Center for Research in Applied Cryptography and Cyber Security, the EU project RISE, the NSF-BSF Grant No. 2019740, and the DTRA Grant No. HDTRA-1-19-1-0016.
Funders | Funder number |
---|---|
China-Israel Science Foundation | |
German Israel Foundation | I-1372-303.7/2016, GIF-grants I-1298-415.13/2015 |
NSF-BSF | 2019740, HDTRA-1-19-1-0016 |
Office of Naval Research | |
European Commission | |
Israel Science Foundation | ISF-grant 1657-16 |
Ministry of Health, State of Israel | 3000-14527 |