Computational capacity of pyramidal neurons in the cerebral cortex

Danko D. Georgiev, Stefan K. Kolev, Eliahu Cohen, James F. Glazebrook

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

The electric activities of cortical pyramidal neurons are supported by structurally stable, morphologically complex axo-dendritic trees. Anatomical differences between axons and dendrites in regard to their length or caliber reflect the underlying functional specializations, for input or output of neural information, respectively. For a proper assessment of the computational capacity of pyramidal neurons, we have analyzed an extensive dataset of three-dimensional digital reconstructions from the NeuroMorpho.Org database, and quantified basic dendritic or axonal morphometric measures in different regions and layers of the mouse, rat or human cerebral cortex. Physical estimates of the total number and type of ions involved in neuronal electric spiking based on the obtained morphometric data, combined with energetics of neurotransmitter release and signaling fueled by glucose consumed by the active brain, support highly efficient cerebral computation performed at the thermodynamically allowed Landauer limit for implementation of irreversible logical operations. Individual proton tunneling events in voltage-sensing S4 protein α-helices of Na+, K+ or Ca2+ ion channels are ideally suited to serve as single Landauer elementary logical operations that are then amplified by selective ionic currents traversing the open channel pores. This miniaturization of computational gating allows the execution of over 1.2 zetta logical operations per second in the human cerebral cortex without combusting the brain by the released heat.

Original languageEnglish
Article number147069
JournalBrain Research
Volume1748
DOIs
StatePublished - 1 Dec 2020

Bibliographical note

Funding Information:
E.C. acknowledges support from the Israel Innovation Authority under project 70002 and from the Quantum Science and Technology Program of the Israeli Council of Higher Education.

Publisher Copyright:
© 2020 Elsevier B.V.

Keywords

  • Action potential
  • Brain energetics
  • Logical operation
  • Morphometry
  • Pyramidal neuron

Fingerprint

Dive into the research topics of 'Computational capacity of pyramidal neurons in the cerebral cortex'. Together they form a unique fingerprint.

Cite this