TY - JOUR
T1 - Completeness of uniformly discrete translates in LP(ℝ)
AU - Lev, Nir
N1 - Publisher Copyright:
© The Author(s) 2025.
PY - 2025
Y1 - 2025
N2 - We construct a real sequence {λn}n=1∞ satisfying λn = n + o(1), and a Schwartz function f on ℝ, such that for any N the system of translates {f(x − λn)}, n > N, is complete in the space Lp(ℝ) for every p > 1. The same system is also complete in a wider class of Banach function spaces on ℝ.
AB - We construct a real sequence {λn}n=1∞ satisfying λn = n + o(1), and a Schwartz function f on ℝ, such that for any N the system of translates {f(x − λn)}, n > N, is complete in the space Lp(ℝ) for every p > 1. The same system is also complete in a wider class of Banach function spaces on ℝ.
UR - http://www.scopus.com/inward/record.url?scp=85217225968&partnerID=8YFLogxK
U2 - 10.1007/s11854-025-0361-8
DO - 10.1007/s11854-025-0361-8
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85217225968
SN - 0021-7670
JO - Journal d'Analyse Mathematique
JF - Journal d'Analyse Mathematique
ER -