TY - JOUR
T1 - Combining the ras inhibitor salirasib and proteasome inhibitors
T2 - A potential treatment for multiple Myeloma
AU - Yaari-Stark, Shira
AU - Nevo-Caspi, Yael
AU - Jacob-Hirsch, Jasmine
AU - Rechavi, Gideon
AU - Nagler, Arnon
AU - Kloog, Yoel
PY - 2011
Y1 - 2011
N2 - Multiple myeloma (MM) is an incurable disease that develops resistance to chemotherapy. New treatments with thalidomide or bortezomib are partially successful. Drug resistance, differentiation block, and increased survival in MM result from genomic alterations, including high overexpression of cyclin D and fibroblast growth factor receptor 3 (FGFR3) and mutations in NRas. Oncogenic Ras isoforms can be inhibited by the Ras inhibitor farnesylthiosalicylic acid (FTS, salirasib), which also inhibits fibroblast growth factor (FGF)-stimulated Ras activation. Here we compared the effects of FTS on the proliferation of NCIH929 (harboring oncogenic NRas) and of two other MM cell lines, MM.1S and U266, which do not harbor oncogenic NRas. NCIH929 responded significantly better than the other cell lines to FTS treatment. FTS also inhibited FGF-stimulated GTP loading of wild-type NRas, and hence ERK activation, in MM-NCIH929. Gene-expression analysis of FTS-treated NCIH929 cells demonstrated downregulation of FGFR3, and the FGFR3 protein in these cells declined after FTS treatment. Combined treatment with FTS and the proteasome inhibitor MG132 or bortezomib yielded synergistic inhibition of NCIH929 MM cell growth. These data strongly suggest that FGFR3 acts together with NRas to activate the MAPK pathway, and that inhibition of Ras by FTS affects both early Ras-dependent signaling and long-term Ras-dependent control of gene expression and protein translation. We suggest that salirasib be considered, both alone and in combination with proteasome inhibitors, as a potential treatment for MM.
AB - Multiple myeloma (MM) is an incurable disease that develops resistance to chemotherapy. New treatments with thalidomide or bortezomib are partially successful. Drug resistance, differentiation block, and increased survival in MM result from genomic alterations, including high overexpression of cyclin D and fibroblast growth factor receptor 3 (FGFR3) and mutations in NRas. Oncogenic Ras isoforms can be inhibited by the Ras inhibitor farnesylthiosalicylic acid (FTS, salirasib), which also inhibits fibroblast growth factor (FGF)-stimulated Ras activation. Here we compared the effects of FTS on the proliferation of NCIH929 (harboring oncogenic NRas) and of two other MM cell lines, MM.1S and U266, which do not harbor oncogenic NRas. NCIH929 responded significantly better than the other cell lines to FTS treatment. FTS also inhibited FGF-stimulated GTP loading of wild-type NRas, and hence ERK activation, in MM-NCIH929. Gene-expression analysis of FTS-treated NCIH929 cells demonstrated downregulation of FGFR3, and the FGFR3 protein in these cells declined after FTS treatment. Combined treatment with FTS and the proteasome inhibitor MG132 or bortezomib yielded synergistic inhibition of NCIH929 MM cell growth. These data strongly suggest that FGFR3 acts together with NRas to activate the MAPK pathway, and that inhibition of Ras by FTS affects both early Ras-dependent signaling and long-term Ras-dependent control of gene expression and protein translation. We suggest that salirasib be considered, both alone and in combination with proteasome inhibitors, as a potential treatment for MM.
KW - Bortezomib
KW - FTS
KW - Multiple myeloma
KW - Ras
KW - Salirasib
KW - Velcade
UR - http://www.scopus.com/inward/record.url?scp=84857074892&partnerID=8YFLogxK
U2 - 10.4172/1948-5956.1000086
DO - 10.4172/1948-5956.1000086
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84857074892
SN - 1948-5956
VL - 3
SP - 187
EP - 194
JO - Journal of Cancer Science and Therapy
JF - Journal of Cancer Science and Therapy
IS - 8
ER -