Combining region and edge cues for image segmentation in a probabilistic Gaussian mixture framework

Omer Rotem, Hayit Greenspan, Jacob Goldberger

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

24 Scopus citations

Abstract

In this paper we propose a new segmentation algorithm which combines patch-based information with edge cues under a probabilistic framework. We use a mixture of multiple Gaussians for building the statistical model with color and spatial features, and we incorporate edge information based on texture, color and brightness differences into the EM algorithm. We evaluate our results qualitatively and quantitatively on a large data-set of natural images and compare our results to other state-of-the-art methods.

Original languageEnglish
Title of host publication2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07
DOIs
StatePublished - 2007
Event2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07 - Minneapolis, MN, United States
Duration: 17 Jun 200722 Jun 2007

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07
Country/TerritoryUnited States
CityMinneapolis, MN
Period17/06/0722/06/07

Fingerprint

Dive into the research topics of 'Combining region and edge cues for image segmentation in a probabilistic Gaussian mixture framework'. Together they form a unique fingerprint.

Cite this